首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ignition behavior of single bubbles during the first oscillation after a shock wave impact was investigated experimentally. The bubbles were created by injection of oxygen into liquid cyclohexane. High speed pressure and optical measurements were applied. The experiments were performed inside cyclohexane, at room temperature and at an initial pressure of 1 bar. It was found that an incident shock wave with a peak pressure of 85 bar ± 8.5 bar can ignite bubbles with equivalent initial diameters between 2.4 and 7.2 mm. Measurements related to the shock-induced bubble compression process, the jet formation inside the bubble, the ignition delay, the light illumination during the bubble explosion, as well as other aspects of the observed bubble behavior are presented. In addition to the experimental observations a theoretical analysis is presented. The set of equations for the theoretical estimation of the pressure and the temperature and of the gaseous mixture inside the bubble at the moment of the observed bubble ignitions is shown and explained.  相似文献   

2.
Injecting superheated water vapour bubbles into a sub-cooled shear flow will induce heat and mass transfer in the form of condensation. Of particular interest is finding the characteristic role that the large-scale vortex structures play on bubble condensation. Because the heat transfer and condensation take place mainly due to convection, the bubble is expected to collapse at an earlier stage because of the trapping by large-scale vortices. The aim of this paper is to investigate two-way thermal and momentum interaction between bubbles and the large-scale coherent structures in a plane turbulent shear layer, focusing on the effect of bubble condensation on large-scale vortex structures embedded in plane, free shear layers. The parameters such as initial bubble temperature, bubble injection location, and carrier fluid temperature have been chosen to examine their effects on the condensation and dispersion of bubbles. Because superheated vapour bubbles immersed within a sub-cooled shear flow field experience heat transfer, the gas phase will certainly condense into liquid if these bubbles remain surrounded long enough by this same sub-cooled liquid. Accordingly, bubble condensation is evident within the shear layer and bubble dispersion is influenced by the large-scale vortex structures. The main driving force behind complete bubble condensation was the difference in temperature between the bubble vapour and the carrier fluid. It was revealed that the effect of the large-scale vortex structures is that the condensed bubbles acquire a larger dispersion than bubbles that were not subject to thermal coupling.  相似文献   

3.
It is shown that detonation can be transmitted from a reacting bubble medium into an explosive gas volume located above the interface. Experiments were performed in which bubble detonation was initiated by wire explosion in a gas–liquid medium. The dynamics of the boundary of the gas–liquid medium after the arrival of the bubble detonation wave at it was studied. The distance between the wire and the boundary of the bubble medium was decreased to 1 cm, at which the gas volume was initiated by the hot products from the wire explosion and the discharge plasma. The probability of detonation transmission from the bubble medium to the volume of the gas mixture depending on the depth of immersion of the wire is determined, and the mechanisms of ignition of the explosive gas volume are described.  相似文献   

4.
The dynamic process of gas absorption from a CO2 bubble into a liquid is examined in the presence of satellite bubbles. The bubble under consideration is held stationary, except its jittering, by the liquid flowing downward. The mass transfer rate is determined by monitoring the rate of reduction in the equivalent bubble diameter during the initial absorption process. It is found that the interaction with the satellite bubbles generally hampers the dissolution of the primary bubble. The extent of reduction in the dissolution rate increases with the net contacting time during the interaction. When the secondary bubbles interact with the primary bubble mainly outside of its wake, however, the dissolution tends to be enhanced due to induced turbulence in the surrounding liquid flow. A simple theoretical model is developed to simulate the observed results as well as the basic features prevailing in a recently proposed scheme, called the GLAD system, for shallow injection of CO2 gas into seawater.  相似文献   

5.
It is well known that the gas distributor can play an important role on the evolution of the bubble size distribution (BSD) in gas-liquid reactors, strippers and absorbers. Therefore, the main subject of the present work was to study the influence of sparger design and process parameters on the BSD in the sparger region of the considered apparatus. For this purpose, both detailed measurements and prediction of the size of bubbles produced at the sparger were carried out in three different experimental apparatuses.The unique set of BSD curves were obtained by analyzing a large amount of bubbles with a measurement based on image analysis technique.Additionally, Colella's model of BSD evolution in bubble columns was further developed by implementing a detailed physical model for predicting the initial BSD at the sparger where the model input is only based on design/process parameters. A validation of the model was carried out using data from two different columns. The comparison between calculated and experimental BSD shows good agreement.  相似文献   

6.
The interaction of bubbles is the key to understand gas–liquid bubbling flow. Two-dimensional axis-symmetry computational fluid dynamics simulations on the interactive bubbles were performed with VOF method,which was validated by experimental work. It is testified that several different bubble interactive behaviors could be acquired under different conditions. Firstly, for large bubbles(d: 4, 6, 8, 10 mm), the trailing bubble rising velocity and aspect ratio have negative correlations with liquid viscosity and surface tension. The influences of viscosity and surface tension on leading bubble are negligible. Secondly, for smaller bubbles(d: 1, 2 mm), the results are complicated. The two bubbles tend to move together due to the attractive force by the wake and the potential repulsive force. Especially for high viscous or high surface tension liquid, the bubble pairs undergo several times acceleration and deceleration. In addition, bubble deformation plays an important role during bubble interaction which cannot be neglected.  相似文献   

7.
Bubble phenomenon is common for ultra-high temperature ceramics (UHTCs) during oxidation or ablation processes, which will impair the oxidation/ablation resistant properties. This work is aiming to illuminate the formation and rupture processes of bubbles. In this work, ZrB2-SiC-WB composite coatings were prepared via vacuum plasma spray technique and oxidized at 1500?°C for different durations. Obvious bubble phenomenon was observed. The morphology and distribution of bubbles were characterized. The formation mechanism of bubbles was calculated and analyzed based on thermal dynamics. The results showed that B2O3 gas played a key role in affecting the bubble behaviors. Bubbles tended to nucleate near the interface between the solid and liquid oxide layers. Small bubbles aggregated to large bubbles near the outmost liquid layer. Large bubbles near the surface were easy to rupture. The calculated results were consistent with the observed results.  相似文献   

8.
Hydrodynamic cavitation has been increasingly used as a substitute to conventional acoustic (or ultrasonic) cavitation for process intensification owing to its easy and efficient operation. In this paper, we have put forth conceptual design of a new kind of hydrodynamic cavitation reactor that uses a converging-diverging nozzle for generating pressure variation required for driving radial motion of cavitation bubbles. Moreover, the reactor uses externally introduced bubbles of a suitable gas (argon or air) for cavitation nucleation. This design differs from earlier designs used by researchers where an orifice plate is used for creating cavitating flow. The new design offers a good control over two crucial parameters that affect the cavitation intensity produced, viz. rate of nucleation and nature of pressure variation driving bubble motion. Using numerical simulations of bubble dynamics and associated heat and mass transfer, trends in cavitation intensity produced in the reactor are assessed with varying design parameters. The results of simulation show that the externally introduced bubbles undergo transient motion in the flow through the nozzle generating moderate cavitation intensity. On the basis of results of simulation, some recommendations have been made for the effective design and scale up of the new kind of hydrodynamic cavitation reactors using concept introduced in this paper.  相似文献   

9.
To investigate the mechanism of gas absorption from a bubble containing soluble and insoluble components, a gaseous mixture of ammonia and nitrogen was bubbled into water. The growth curve, volume, surface area and shape of the growing bubbles were measured with parameters such as inlet gas composition, gas flow rate and gas chamber volume. The bubble volume decreased with the increasing composition of ammonia in a bubble, decreasing gas chamber volume and decreasing gas flow rate.To reasonably express the mass transfer from the bulk of a gas in a bubble to the bulk of a liquid, the overall mass transfer resistance was evaluated by the mass transfers in the gas phase, interface and liquid phase.The non-spherical bubble formation model combined with the overall mass transfer resistance estimated well experimental bubble shape, bubble volume at its detachment from an orifice, growth rate and mass transfer rate.Moreover, the change of concentration with bubble growth time and the fractional absorption during bubble formation were simulated.  相似文献   

10.
This study investigated the effect of alcohol on gas hold-up in two methods to add alcohol into a column. In the first method, a weighed amount of ethanol was poured into the column before the gas hold-up measurement (batch mode). In the second method, we added ethanol continuously in the form of vapor dispersed in the gas phase (continuous mode). The continuous mode was more effective in improving the gas hold-up in a heterogeneous flow regime than the batch mode. On the other hand, it had a negative effect on gas hold-up in a homogeneous flow regime. To investigate these phenomena in more detail, we measured the detachment period, bubble size distribution, and bubble break-up frequency during bubble formation in the continuous mode. When the liquid vapor was highly soluble in the continuous water phase, the detachment period and average bubble size increased and the bubble break-up frequency decreased. On the other hand, when there was little interaction between the liquid vapor and continuous water phase, the effect was negligible. This could be explained by liquid vapor diffusion from the bubble inside into the continuous water phase.  相似文献   

11.
Local gas holdup, bubble diameter and bubble rise velocity in the nitrogen/Drakeol-10 oil system were measured at both laboratory (ambient temperature and pressure) and industrially relevant (high temperature and pressure) conditions using a dual conductivity probe in a slurry-bubble-column reactor. It was found that a constant superficial velocity, the Sauter mean bubble diameter decreases with increasing pressure and temperature. The bubble rise velocity significantly decreases as the pressure increases. Large bubbles rise faster than smaller bubbles. Akita and Yoshida's correlation [1] was utilized to compute the bubble size. Predicted values agree with the experimental data at high temperature.  相似文献   

12.
An image processing technique was used to study dominant bubble mechanisms in a two-dimensional packed-bed at pore level under the bubbly flow regime. Bubble breakup and coalescence were identified as dominant mechanisms using a large number of image samples. Two types of coalescence mechanisms were identified that occur due to compression and deceleration associated with the bubbles and three breakup mechanisms were identified that are result of liquid shear force, bubble acceleration, and bubble impact. Data on various two-phase parameters, such as local void fraction, bubble velocity, size, number, and shape were obtained from the images. Results indicated that when a flow regime changed from bubbly to either trickling or pulsing flow, the number of average sized bubbles significantly decreased and the shape of the majority of the bubbles was no longer spherical. Although a mean bubble velocity of all sized bubbles was uniform for given gas and liquid superficial velocities, individual bubble velocities were quite different depending on the bubble location in the pore. The present bubble size distributions were compared with previous studies and the results on bubble size are in general agreement.  相似文献   

13.
利用高速摄像仪和水声换能器研究蒸汽凝结时的声压波动信号和凝结区域的转变。结果表明,随过冷度和蒸汽流量升高分别出现3个不同的凝结区域--体积波动区、过渡区和毛细波区。此外,观察到两种分别对应气泡分裂和破碎的声压波动波形。声压波动信号的峰度存在阶跃变化,且阶跃处与凝结区域转变的阈值接近。幅度谱的低频区域存在频率在150~300 Hz的峰值,其可能是由蒸汽体积周期性变化引入。在过渡区和毛细波区发现频率高于7000 Hz的峰值,其可能是由气泡突然破碎引入的局部压力高频振荡造成的。蒸汽气泡破碎频率随过冷度和蒸汽流量增加而增加,且与幅度谱中首峰频率接近,误差在±20%以内。  相似文献   

14.
超声波场中蒸汽气泡凝结过程及传热特性   总被引:1,自引:0,他引:1       下载免费PDF全文
唐继国  阎昌琪  孙立成 《化工学报》2015,66(11):4359-4365
利用高速摄像仪记录有、无超声波时注入过冷水中蒸汽气泡的凝结过程,以分析超声波对蒸汽气泡凝结过程及传热特性的影响。结果表明:在超声波场中,蒸汽气泡表面会形成晶格状毛细波,有效增加气泡表面积,并加强气泡周围流体热边界层扰动,从而导致凝结换热的强化及气泡凝结速度加快。基于15~60 K过冷度下,有、无超声波时较大蒸汽气泡凝结的实验数据,拟合得出有、无超声波时的气泡凝结换热经验关联式,预测误差在±30%以内。  相似文献   

15.
In a trayed bubble column, the structure of the partitioning plate plays an important role on the bubble behavior. This study examined the effect of the opening ratio and pore size of the plate on the bubble break-up frequency and bubble size distribution. The sieve tray was used as the partitioning plate. The opening ratio was closely related to gas cap development. The stagnation of bubble flow and a gas cap were observed with an opening ratio less than 48.5%. The gas cap increased with decreasing opening ratio and increasing superficial gas velocity. The main effect of the sieve tray could be categorized into the additional drag force and bubble break-up depending on the sieve pore size. When the sieve pore size was smaller than the Sauter diameter of the bubble swarm, the movement of rising bubbles was interrupted by the drag force applied by the surrounding mesh lines. On the other hand, when the sieve pore size was larger than the Sauter diameter, the bubbles were affected by the additional bubble break-up. After the bubbles penetrated the sieve tray, the bubble size distribution shifted to a smaller one and the Sauter diameter decreased.  相似文献   

16.
In the present study, we preformed a two-dimensional numerical simulation of the motion and coalescence of bubble pairs rising in the stationary liquid pool, using the moving particle semi-implicit (MPS) method. Moving particles were used to describe the liquid phase and the vapor phase was evaluated using real vapor sate equation. The bubble–liquid interface was set to be a free surface boundary which could be captured according to the motion and location of interfacial particles. The behaviors of coalescence between two identical bubbles predicted by the MPS method were in good agreement with the experimental results reported in the literature. Numerical results indicated that the rising velocity of the trailing bubble was larger than that of the leading bubble. Both of the leading bubble and the trailing bubble rose faster than the isolated bubble. After coalescence, the coalesced bubble showed velocity and volume oscillations. The time of the volume oscillations increased with increasing initial bubble diameter. The wake flow and vortex would form behind the coalesced bubble.  相似文献   

17.
Bubble coalescence reduces specific area and weakens the work performance of bubble column. The bubble coalescence near gas sparger which is caused mainly by bubble growing is different from the ones occurring in major liquid. Bubble coalescence efficiency near gas sparger is influenced by many factors including sparger configuration, gas flow rate, bubble deformation, solution composition, etc. This work has conducted a set of visual experiments to study the coalescence characteristics near multi-orifice plate. The experiment parameters cover a wide range of conditions including large scope of gas flow rate,different kinds of solution and orifice configurations. The experimental results suggest that coalescence time is applicable to reflect the influence of the pitch of orifices and gas flow rate on bubble coalescence efficiency. As the number of orifices increases, bubble coalescence efficiency is reduced by the disturbance from the bubbles at adjacent orifices. A hindering coefficient is used to consider the hindering effect of additives on bubble coalescence efficiency. Finally a new calculation expression is established to predict bubble coalescence efficiency near multi-orifice plate whose fundamental form is based on the logistic curve of binary response. The calculated values that refer to this calculation expression are well consistent with the experimental results.  相似文献   

18.
The aim of this work is to investigate experimentally the bubble breakup in a microfluidic T-junction divergence using a high-speed digital camera and a micro-Particle Image Velocimetry (micro-PIV) system. The breakup and non-breakup of N2 bubbles in glycerol–water mixtures with several concentrations of sodium dodecyl sulphate (SDS) as surfactant were studied with capillary number ranging from 0.001 to 0.1. The cross section of PMMA square microchannel is 400 μm wide and 400 μm deep. Four various flow patterns were observed at the T-junction by changing gas and liquid flow rates. The dynamics of three various types of symmetric breakup of bubbles were investigated. The symmetric breakup of bubbles type I is mainly controlled by the augmented pressure in liquid phase. The symmetric breakup of bubbles type II is controlled by both the increased pressure and viscous forces. In the symmetric breakup of bubbles type III, a scaling law for the minimum bubble neck and the remaining time during bubble breaking process were found. The transitions between breakup and non-breakup of bubbles were investigated, and a power–law relationship between bubble extension and capillary number was proposed to predict the transitions between adjacent regimes. Our experimental results reveal that the bubble breakup in a microfluidic T-junction divergence is similar to the droplet behaviours in such a device ( [Jullien et al., 2009] , [Leshansky and Pismen, 2009] and [Link et al., 2004] ).  相似文献   

19.
In this paper a model is presented that is a dynamic extension of the classic two-phase reactor models used to predict conversion and selectivity of fluidized reactors. The most important part of the model is a dynamic discrete bubble model that can correctly predict bubble sizes and also exhibits chaotic dynamics. This bubble model is based on the discrete bubble models presented by Clift and Grace [AIChE Symp. Ser. 66 (105) (1970) 14; 67 (116) (1971) 23; in: J.F. Davidson, R. Clift, D. Harrison (Eds.), Fluidization, Academic Press, London, 1985, p. 73] and Daw and Halow [AIChE Symp. Ser. 88 (289) (1992) 61]. The latter showed that this type of models can exhibit chaotic behavior. By application of an extended version of Pyragas' control algorithm [K. Pyragas, Phys. Lett. A 170 (1992) 421] the bubble dynamics can be changed from chaotic to periodic in a ‘flow'-regime in which the model otherwise would predict chaotic behavior. Pyragas' control algorithm is used to synchronize a chaotic system with one of its periodic solutions using a feedback control loop. This results in smaller bubbles, thus enhancing mass transfer of the reactant gas in the bubbles to the catalyst particles. The model is used to predict the effect of the changed bubble dynamics on a catalytic reaction of industrial importance, viz. the ammoxidation of propylene to acrilnitril (Sohio process). It is shown that both conversion and selectivity are appreciably enhanced.  相似文献   

20.
To determine bubble rising and descending velocity simultaneously, a BVW‐2 four‐channel conductivity probe bubble parameters apparatus and its analysis are used in gas‐liquid and gas‐liquid‐solid bubble columns. The column is 100 mm in internal diameter and 1500 mm in height. The solid particles used are glass beads with an average diameter of 17.82 μm, representing typical particle size for catalytic slurry reactors. The effects of superficial gas velocity (1.0 cm/s ≤ Ug 6.4 cm/s), solid holdup (0 % ≤ ?s 30 %), and radial location (r/R = 0, 0.4, and 0.7) on bubble velocity distributions are determined. It is found that increasing Ug can increase the velocity of bubbles but do not exert much influence on bubble velocity distribution. Solid holdup mainly affects the distribution of bubble velocity while the radial direction affects bubble velocity distribution only slightly. The ratio of descending bubbles to rising bubbles increases from the bubble column center to the wall. It can be proved experimentally that large bubbles do not always rise faster than small bubbles at higher Ug (for example 6.4 cm/s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号