首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞ performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.  相似文献   

2.
A guaranteed cost control scheme is proposed for batch processes described by a two‐dimensional (2‐D) system with uncertainties and interval time‐varying delay. First, a 2‐D controller, which includes a robust feedback control to ensure performances over time and an iterative learning control to improve the tracking performance from cycle to cycle, is formulated. The guaranteed cost law concept of the proposed 2‐D controller is then introduced. Subsequently, by introducing the Lyapunov–Krasovskii function and adding a differential inequality to the Lyapunov function for the 2‐D system, sufficient conditions for the existence of the robust guaranteed cost controller are derived in terms of matrix inequalities. A design procedure for the controller is also presented. Furthermore, a convex optimization problem with linear matrix inequality (LMI) constraints is formulated to design the optimal guaranteed cost controller that minimizes the upper bound of the closed‐loop system cost. The proposed control law can stabilize the closed‐loop system as well as guarantee H performance level and a cost function with upper bounds for all admissible uncertainties. The results can be easily extended to the constant delay case. Finally, an illustrative example is given to demonstrate the effectiveness and advantages of the proposed 2‐D design approach. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2033–2045, 2013  相似文献   

3.
4.
A neural network based batch-to-batch optimal control strategy is proposed in this paper. In order to overcome the difficulty in developing mechanistic models for batch processes, stacked neural network models are developed from process operational data. Stacked neural networks have enhanced model generalisation capability and can also provide model prediction confidence bounds. However, the optimal control policy calculated based on a neural network model may not be optimal when applied to the true process due to model plant mismatches and the presence of unknown disturbances. Due to the repetitive nature of batch processes, it is possible to improve the operation of the next batch using the information of the current and previous batch runs. A batch-to-batch optimal control strategy based on the linearisation of stacked neural network model is proposed in this paper. Applications to a simulated batch polymerisation reactor demonstrate that the proposed method can improve process performance from batch to batch in the presence of model plant mismatches and unknown disturbances.  相似文献   

5.
基于T-S模糊模型的间歇过程的迭代学习容错控制   总被引:3,自引:1,他引:2       下载免费PDF全文
间歇过程不仅具有强非线性,同时还会受到诸如执行器等故障影响,研究非线性间歇过程在具有故障的情况下依然稳定运行至关重要。针对执行器增益故障及系统所具有的强非线性,提出一种新的基于间歇过程的T-S模糊模型的复合迭代学习容错控制方法。首先根据间歇过程的非线性模型,利用扇区非线性方法建立其T-S模糊故障模型,再利用间歇过程的二维特性与重复特性,在2D系统理论框架内,设计2D复合ILC容错控制器,进而构建此T-S模糊模型的等价二维Rosser模型,接着利用Lyapunov方法给出系统稳定充分条件并求解控制器增益。针对强非线性的连续搅拌釜进行仿真,结果表明所提出方法具有可行性与有效性。  相似文献   

6.
多故障并发不确定系统的鲁棒完整性容错控制   总被引:2,自引:0,他引:2       下载免费PDF全文
陶洪峰  胡寿松 《化工学报》2010,61(8):2002-2007
针对传统容错控制方法难以保证非线性系统在执行器和传感器多故障并发情形下的稳定性问题,研究了一类时滞不确定模糊系统的鲁棒完整性容错控制方法。建立了基于T-S模糊逻辑的不确定非线性模型,定义执行器和传感器故障阵的标准归一化形式,在利用Newton-Leibniz公式变换系统结构的基础上,根据线性矩阵不等式技术给出了鲁棒容错控制器存在的时滞相关性充分条件,以保证整个闭环系统在执行器和(或)传感器发生故障时的稳定性,同时满足给定的广义鲁棒性能约束,联合抑制扰动、初始状态和时滞状态对系统性能的影响。最后仿真结果验证了方法的必要性和可行性。  相似文献   

7.
Critical evaluation of approaches for on-line batch process monitoring   总被引:2,自引:0,他引:2  
Since the introduction of batch process monitoring using component models in 1992, different approaches for statistical batch process monitoring have been suggested in the literature. This is the first evaluation of five proposed approaches so far. The differences and similarities between the approaches are highlighted. The derivation of control charts for these approaches are discussed. A control chart should give a fast and reliable detection of disturbances in the process. These features are evaluated for each approach by means of two performance indices. First, the action signal time for various disturbed batches is tested. Secondly, the probability of a false warning in a control chart is computed. In order to evaluate the five approaches, five different data sets are studied: one simulation of a batch process, three batch processes obtained from industry and one laboratory spectral data set. The obtained results for the performance indices are summarised and discussed. Recommendations helpful for practical use are given.  相似文献   

8.
Focusing on injection molding processes with partial actuator failures, a new design of infinite horizon linear quadratic control is introduced. A new state space process model is first derived through input–output process data. Furthermore, an improved infinite horizon linear quadratic control scheme, whereby the process state variables and tracking error can both be regulated separately, is proposed to show enhanced control performance against partial actuator failures and unknown disturbances. Under the circumstances of actuator faults, the closed-loop system is indeed a process with uncertain parameters. Hence, a sufficient condition is proposed to guarantee robust stability is presented using Lyapunov theory. The proposed concepts are illustrated in an injection velocity control case study to show the effectiveness.  相似文献   

9.
Based on the two-dimensional (2D) systemtheory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model predictions along the batch index can be calculated analytically due to the 2D Roesser model of the batch process. Then, an integrated framework of combining iterative learning control (ILC) andmodel predictive control(MPC) is formed reasonably. The output of feedforward ILC is estimated on the basis of the predefined process 2D model. By minimizing a quadratic objective function, the feedback MPC is introduced to obtain better control performance for tracking problem of batch processes. Simulations on a typical batch reactor demonstrate that the satisfactory tracking performance as well as faster convergence speed can be achieved than traditional proportion type (Ptype) ILC despite the model error and disturbances.  相似文献   

10.
This work considers the problem of designing an active fault‐isolation scheme for nonlinear process systems subject to uncertainty. The faults under consideration include bounded actuator faults and process disturbances. The key idea of the proposed method is to exploit the nonlinear way that faults affect the process evolution through supervisory feedback control. To this end, a dedicated fault‐isolation residual and its time‐varying threshold are generated for each fault by treating other faults as disturbances. A fault is isolated when the corresponding residual breaches its threshold. These residuals, however, may not be sensitive to faults in the operating region under nominal operation. To make these residuals sensitive to faults, a switching rule is designed to drive the process states, upon detection of a fault, to move toward an operating point that, for any given fault, results in the reduction of the effect of other faults on the evolution of the same process state. This idea is then generalized to sequentially operate the process at multiple operating points that facilitate isolation of different faults for the case where the residuals are not simultaneously sensitive to faults at a single operating point. The effectiveness of the proposed active fault‐isolation scheme is illustrated using a chemical reactor example and demonstrated through application to a solution copolymerization of methyl methacrylate and vinyl acetate. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2435–2453, 2013  相似文献   

11.
This article proposes a model-based direct adaptive proportional-integral (PI) controller for a class of nonlinear processes whose nominal model is input-output linearizable but may not be accurate enough to represent the actual process. The proposed direct adaptive PI controller is composed of two parts: the first is a linearizing feedback control law that is synthesized directly based on the process's nominal model and the second is an adaptive PI controller used to compensate for the model errors. An effective parameter-tuning algorithm is devised such that the proposed direct adaptive PI controller is able to achieve stable and robust control performance under uncertainties. To show the robust stability and performance of the direct adaptive PI control system, a rigorous analysis involving the use of a Lyapunov-based approach is presented. The effectiveness and applicability of the proposed PI control strategy are demonstrated by considering the time-dependent temperature trajectory tracking control of a batch reactor in the presence of plant/model mismatch, unanticipated periodic disturbances, and measurement noises. Furthermore, for use in an environment that lacks full-state measurements, the integration of a sliding observer with the proposed control scheme is suggested and investigated. Extensive simulation results reveal that the proposed model-based direct adaptive PI control strategy enables a highly nonlinear process to achieve robust control performance despite the existence of plant/model mismatch and diversified process uncertainties.  相似文献   

12.
This work considers the control of batch processes subject to input constraints and model uncertainty with the objective of achieving a desired product quality. First, a computationally efficient nonlinear robust Model Predictive Control (MPC) is designed. The robust MPC scheme uses robust reverse‐time reachability regions (RTRRs), which we define as the set of process states that can be driven to a desired neighborhood of the target end‐point subject to input constraints and model uncertainty. A multilevel optimization‐based algorithm to generate robust RTRRs for specified uncertainty bounds is presented. We then consider the problem of uncertain batch processes subject to finite duration faults in the control actuators. Using the robust RTRR‐based MPC as the main tool, a robust safe‐steering framework is developed to address the problem of how to operate the functioning inputs during the fault repair period to ensure that the desired end‐point neighborhood can be reached upon recovery of the full control effort. The applicability of the proposed robust RTRR‐based controller and safe‐steering framework subject to limited availability of measurements and sensor noise are illustrated using a fed‐batch reactor system. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

13.
14.
针对批次生产周期不确定问题,提出一种非固定终端的经济优化控制方法。首先采用经济模型预测控制方法,用收益最大化的经济型目标函数代替终端约束,并将批次生产周期纳入被优化变量,建立动态经济优化问题,并通过对每个控制变量进行有差异的参数化,将动态优化问题转化为非线性规划(NLP)问题;然后使用内点罚函数法求解含非线性约束的优化问题,得到的最优控制序列和最佳批次生产周期,可将不确定扰动带来的损失降低到最小。其次采用非固定预测时域的滚动时域控制方法,不仅提高多变量系统的协同控制能力,而且根据实时预测终端产品产量不断优化更新关键操纵变量的控制分段函数的分割数及控制序列,从而可灵活优化操纵变量和操作时间的轨迹。最后在苯胺加氢过程上进行了批次优化控制性能测试,测试结果表明,非固定终端的经济优化控制从批次的总生产效益角度来优化每个批次生产的操作条件,实现批次反应过程生产时间与经济效益的最优化管理。  相似文献   

15.
Adaptive iterative learning control based on the measured input-output data is proposed to solve the traditional iterative learning control problem in the batch process. It produces a control law with self-tuning capability by combining a batch-to-batch model estimation procedure with the control design technique. To build the unknown batch operation system, the finite impulse response (FIR) model with the lifted system is constructed for easy construction of a recursive least squares algorithm. It can identify the pattern of the current operation batch. The proposed model reference control method is applied to feedback control of the lifted system. It finds an appropriate control input so that the desired performance of the batch output can track the prescribed finite-time trajectory by iterative trials. Furthermore, on-line tracking control is developed to explore the possible adjustments of the future input trajectories within a batch. This can remove the disturbances in the current batch rather than the next batch trial and keep the product specifications consistent at the end of each batch. To validate the theoretical findings of the proposed strategies, two simulation problems are investigated.  相似文献   

16.
Disturbance rejection of ball mill grinding circuits using DOB and MPC   总被引:3,自引:0,他引:3  
Ball mill grinding circuit is essentially a multivariable system with couplings, time delays and strong disturbances. Many advanced control schemes, including model predictive control (MPC), adaptive control, neuro-control, robust control, optimal control, etc., have been reported in the field of grinding process. However, these control schemes including the MPC scheme usually cannot achieve satisfying effects in the presence of strong disturbances. In this paper, disturbance observer (DOB), which is widely used in motion control applications, is introduced to estimate the disturbances in grinding circuit. A compound control scheme, consisting of a feedforward compensation part based on DOB and a feedback regulation part based on MPC (DOB-MPC), is thus developed. A rigorous analysis of disturbance rejection performance is given with the considerations of both model mismatches and external disturbances. Simulation results demonstrate that when controlling the ball mill grinding circuit, the DOB-MPC method possesses a better performance in disturbance rejection than that of the MPC method.  相似文献   

17.
基于广义预测控制的间歇生产迭代优化控制   总被引:2,自引:1,他引:1  
针对间歇生产,提出了一种基于广义预测控制的批次迭代优化控制策略--BGPC,在间歇过程中引入批次间优化的思想,将迭代学习控制ILC和广义预测控制GPC相结合,在GPC实时结构参数辨识的基础上利用前面批次的模型预测误差修正当前批次的模型预测值.该算法能够有效地克服模型失配、扰动和系统参数变化等情况.文章最后以一个数值例子和间歇反应器为对象进行仿真试验,验证了该算法是有效的.  相似文献   

18.
王亚君  孙福明 《化工学报》2014,65(12):4905-4913
针对传统的多元统计监测方法不能有效检测工业过程中由于初始条件波动较大所引发的弱故障问题,提出一种基于多动态核聚类的核主元分析(DKCPCA)监控策略,实现多阶段间歇过程的弱故障在线监控.该方法首先针对过程中各阶段每一批次数据结合自回归移动平均时间序列模型(ARMAX)和核主成分分析(KPCA)方法分别建立动态核PCA模型,然后根据各批次模型间载荷的相似性采用分层次聚类方法进行聚类,最后将聚在一起的批次数据进行展开重新再建立动态核PCA模型,随着聚类数目的不同从而建立多个类模型.当在线应用时给出了多模型选择策略,以提高监测精度.将此方法应用于青霉素发酵过程的监控中,监测结果表明此方法取得了比DKPCA和MKPCA更好的监测性能.  相似文献   

19.
This paper presents the diagonal with Blaschke products factorization (DBFact) approach to factor out multivariable time delay and nonminimum phase zeros from multi-input multi-output (MIMO) systems. Based on that, a new output-order independent minimum variance (MV) control law for MIMO systems is proposed. The DBFact method is a two-step factorization procedure, relying on the diagonal and Blaschke factorization methods. This method has the advantage of being a direct and non-iterative procedure. This new factorization approach allows the calculation of an MV control law considering the multivariable time delay as a limiting-performance factor and the nonminimum phase zeros and their corresponding directions. Based on the proposed MV control law, a performance benchmark is introduced, which can be calculated by the DBFact filters and routine operating data. The DBFact methodology was applied to two control structures of the linear plant model of Linde's heat integrated air separation, in which the MV control law output-order dependency property and the suitability of the performance benchmark were evaluated. Some results were compared with those obtained by admitting the generalized interactor matrix instead of the DBFact filters. The results show the capability of the DBFact methodology to factor the nonminimum phase terms to provide a reliable MIMO controller performance benchmark and illustrate the importance of considering the nonminimum phase zeros and their actual directionality in the MV control law.  相似文献   

20.
A spatiotemporal metabolic model of a representative syngas bubble‐column reactor was applied to design and evaluate dynamic matrix control (DMC) schemes for regulation of the desired by‐product ethanol and the undesired by‐product acetate. This model was used to develop linear step response models for controller design and also served as the process in closed‐loop simulations. A 2 × 2 DMC scheme with manipulation of the liquid and gas feed flows to the column provided a superior performance to proportional integral (PI) control due to slow process dynamics combining the multivariable and constrained nature of the control problem. Ethanol concentration control for large disturbances was further improved by adding the flow of a pure hydrogen stream as a third manipulated variable. The advantages of DMC for syngas bubble‐column reactor control are demonstrated and a design strategy for future industrial applications is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号