共查询到20条相似文献,搜索用时 156 毫秒
1.
火电厂负荷优化分配的模拟退火粒子群算法 总被引:2,自引:0,他引:2
合理选择火电厂负荷优化分配的优化算法对快速完成电网调度指令、最大限度降低发电成本至关重要.在标准粒子群优化算法中引入模拟退火算法的思想,引入收缩因子对算法的重要参数进行了改进,并对种群初始化方式进行了改进,采用拉格朗日乘子法处理功率平衡约束.在严格满足约束条件的基础上,缩短了优化计算时间,进一步提高了算法精度.实例计算... 相似文献
2.
负荷优化分配是火电厂运行优化的一个重要研究领域,在机组之间合理地优化分配负荷能够提高整个火电厂运行的经济性。针对火电厂实际的运行情况,考虑多个实际约束条件,建立了并行火电机组间连续多时段动态负荷优化分配的数学模型;提出运用新近发展起来的智能算法-粒子群算法来解决动态负荷优化分配问题,详细介绍和研究了该算法的基本原理以及在负荷优化分配问题上的实现过程,并针对原算法的不足,对算法进行了改进;根据负荷分配和算法的特性,对初始种群的生成方法进行了改进,同时对约束条件进行了有效处理。仿真实例表明,该方法收敛性好,收敛速度快,能够有效地达到或接近全局最优,从而为火电厂机组负荷优化分配的求解提供了新的有效算法。 相似文献
3.
基于混沌粒子群算法的火电厂厂级负荷在线优化分配 总被引:1,自引:1,他引:1
机组负荷优化分配是降低发电厂能耗水平的重要技术手段,该文针对厂级负荷在线优化分配对算法速率和精度的要求,提出一种新的机组负荷实时分配模型,分别给出了机组自动发电控制和厂级负荷分配方式下负荷响应速率约束方程,并提出一种自适应约束边界,可显著提高算法计算效率,在满足电网对机组负荷品质要求的前提下实现全厂煤耗量最小的目标。提出采用混沌粒子群算法来求解实时负荷优化分配问题,采用自适应惯性权重以加快算法收敛速度,在粒子群算法解的邻域内进行混沌优化搜索,避免算法陷入局部极值点。文中给出了厂级负荷在线优化分配算法步骤,并进行了算例分析,验证了所提模型和算法的有效性。 相似文献
4.
电力系统经济负荷分配的混沌粒子群优化算法 总被引:1,自引:1,他引:1
提出一种新的混沌粒子群优化(CPSO)算法,将其用于求解复杂的电力系统经济负荷分配(ELD)问题。该算法保持了粒子群优化(PSO)的简单结构,先利用PSO算法的全局收敛能力进行搜索,以获得近似解(即粒子经过的最佳位置),然后利用混沌优化的混沌运动特性在近似解的邻域内进行局部搜索,从而获得精确的全局最优解。多个算例的仿真结果表明,该算法能快速有效求取电力系统ELD问题更精确的最优解。 相似文献
5.
6.
7.
8.
9.
10.
基于免疫粒子群优化算法的梯级水电厂间负荷优化分配 总被引:2,自引:0,他引:2
免疫粒子群优化算法(IA-PSO)是将免疫系统的免疫信息处理机制引入粒子群算法(PSO)中,利用其特有的浓度选择机制以及疫苗接种原理,改进了粒子群优化算法的全局寻优能力,提高了收敛速度。在分析梯级水电厂间负荷分配的数学模型和IA-PSO算法特点的基础上,提出了基于IA-PSO算法的负荷优化分配方法,建立了数学模型,给出了具体求解步骤。经实例验证,IA-PSO算法得出的负荷分配方案优于PSO算法的计算结果,且算法后期收敛速度快,从而为梯级水电厂间负荷优化分配问题提供了一条新的求解途径,可应用于更广泛的优化问题。 相似文献
11.
基于粒子群-差异进化混合算法的电力系统无功优化 总被引:1,自引:0,他引:1
针对传统粒子群算法中收敛速度快但易于陷入局部最优等特点,将差异进化算法与粒子群算法相结合,提出了一种粒子群-差异进化混合算法。该算法在粒子寻优过程中除跟踪个体极值和全局极值外,还跟踪粒子差异进化产生的第三个值;同时,当粒子在某一维上的速度小于给定值时,将重新初始化该维度粒子速度。建立了无功优化数学模型,并将合算法应用到无功优化中。通过MATLAB编程对IEEE-30节点系统进行优化计算,并与遗传算法和粒子群算法比较,结果表明本文提出的算法应用于无功优化拥有较快的收敛速度和全局寻优能力,具有广阔的发展前景。 相似文献
12.
提出一种高维多目标电力系统无功优化模型。相比于传统的电力系统无功优化模型,该模型能够在无功优化中同时兼顾系统的有功损耗、电压水平、静态电压稳定性以及供电能力。针对已有的求解多目标无功优化模型的算法应用于求解所提模型时存在的局限性,进一步引入一种基于帕雷托熵的高维多目标粒子群优化算法并加以改进,使得该算法能够有效求解高维多目标优化问题。最后,利用IEEE-39节点系统验证了所提模型和求解算法的正确性和有效性。仿真结果表明,在传统的多目标无功优化模型中引入系统供电能力,能够在不恶化其他目标函数优化效果的情况下,使系统的供电能力得到提高。 相似文献
13.
改进粒子群算法的无功优化 总被引:1,自引:0,他引:1
通过对传统梯度算法和粒子群算法的研究,提出了将梯度算法和粒子群算法(GPSO)相结合的梯度粒子算法.建立了无功优化的数学模型,将梯度粒子算法运用到无功优化中,通过算例验证,梯度粒子算法能够获得更好的全局最优解,此表明该算法运用到实际中将有利于在线电力系统无功优化. 相似文献
14.
基于改进粒子群算法的电力系统无功优化 总被引:8,自引:0,他引:8
电力系统无功优化问题是一个多变量、多约束的混合非线性规划问题。提出了一种改进粒子群算法用以解决这一复杂优化问题。在改进的算法中,首先结合混沌优化思想对粒子群进行初始化,减轻了粒子初始位置的选择对算法优化性能的影响;在进化过程中引入了自探索行为,使得粒子的搜索过程更加符合实际;引入了变异机制及3种判断陷入局部最优的标准,当发现粒子群陷入局部最优时,通过变异,帮助粒子跳出局部陷阱,增加发现最优解的机会。给出了问题的求解方法,并对IEEE 6、14节点系统进行了仿真计算,实验数值对比表明了算法的可行性和有效性。 相似文献
15.
电力系统经济负荷分配的量子粒子群算法 总被引:2,自引:0,他引:2
本文首次将量子粒子群算法用于电力系统经济负荷分配中。该算法是以粒子群中粒子的收敛特性为基础,依据量子物理理论提出的,改变了传统粒子群算法的搜索策略,可使粒子在整个可行解空间中搜索寻求全局最优解。同时该算法的进化方程中不需要速度向量,而且进化方程的形式更简单,参数较少且容易控制。对两个算例进行仿真测试,证实该算法可有效解决经济负荷分配问题;性能对比显示,该算法求得的解优于已有的改进粒子群算法及其它优化算法所求得的解。本文为量子粒子群算法用于经济负荷分配的实用化研究奠定了必要的理论基础。 相似文献
16.
为了解决家庭负荷优化调度中的不确定性参数问题,以非侵入负荷监测数据为基础,提出一种基于机会约束规划的家庭用电设备负荷优化调度方法。该方法采用机会约束规划方法构建了一个包含多种随机变量的优化调度模型,并结合随机模拟技术与粒子群优化算法求解决策结果。设置不同的置信水平和时变温度约束区间反映用户对约束违背容忍度与用户多样化舒适区间的选择,并讨论了两者对调度结果的影响。算例仿真结果表明,所提模型能够在随机变量扰动下为用户提供一个具有良好鲁棒性的零容忍度方案;用户也可通过损失一定的舒适度和调整温度约束区间换取经济而多样化的用电决策。 相似文献
17.
改进粒子群优化算法在电力系统多目标无功优化中应用 总被引:3,自引:1,他引:3
采用自适应聚焦粒子群优化(AFPSO)算法对电力系统进行无功优化.以最优控制原理为基础,引入静态电压稳定性指标,建立了综合考虑系统有功网损最小、电压水平最好以及静态电压稳定裕度最大的多目标无功优化模型,并采用模糊集理论将此多目标优化问题转化为单目标优化问题.通过最小化各目标的隶属度最大值(指标差的隶属度值大),从而只提升差的指标,使系统整体性能提高.同时,采用罚函数的形式处理负荷节点电压和无功发电功率2个状态变量不等式约束.在IEEE 57节点系统上进行测试,通过仿真测试及不同算法优化结果的对比,表明AFPSO算法在实现系统经济运行的同时也增强了电网的电压稳定,同时证明了AFPSO算法的有效性和优越性. 相似文献
18.
针对粒子群无功优化中由于随机生成代表控制变量值的粒子,使得在优化迭代过程中易陷入局部最优解,而且后期收敛速度慢等问题,将混沌优化算法融合到粒子群算法中,提出了混沌粒子群算法求解多目标无功优化问题。该算法在初始化粒子即无功优化控制变量值时,采用混沌思想,增加控制变量取值的多样性;通过粒子群无功优化算法计算各个粒子对应的适应值即无功优化目标函数值,并按照其大小择优选取控制变量值进行混沌优化以帮助无功优化控制变量跳出局部极值区域;并根据无功优化目标函数值自适应地调整其惯性权重系数以提高全局与局部搜索能力。通过算例分析表明,采用自适应混沌粒子群算法进行无功优化,能够及时跳出局部最优得到全局最优解,且收敛速度快。 相似文献
19.
针对粒子群(PSO)算法的局限性,提出了全局粒子群(GPSO)算法,并将其应用于电力系统无功优化.建立基于全局粒子群算法的无功优化数学模型,给出全局粒子群算法的具体步骤.通过对IEEE30节点算例的测试,得到全局粒子群算法在无功优化问题上的收敛速度和优化效果. 相似文献