首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrodynamic and mass transfer characteristics of a gas-liquid stirred tank provided with a radial gas-inducing turbine were studied. The effect of the rotation speed and the liquid submergence on global hydrodynamic and mass transfer parameters such as the critical impeller speed, the induced gas flow rate, the gas holdup, the power consumption and the volumetric gas-liquid mass transfer coefficient were investigated. The experiments are mainly conducted with air-water system. In the case of critical impeller speed determination, two liquid viscosities have been used. The volumetric gas-liquid mass transfer coefficient kLa has been obtained by two different techniques. The gas holdup, the induced gas rate and the volumetric gas-liquid mass transfer coefficient are increasing functions with the rotation speed and decreasing ones with the liquid submergence. The effects of these operating parameters on the measured global parameters have been taken into account by introducing the dimensionless modified Froude number and correlations have been proposed for this type of impeller.  相似文献   

2.
Flow and mass transfer properties under air-water Taylor flow have been investigated in two square microchannels with hydraulic diameters of 400 and 200 μm. Experimental data on Taylor bubble velocity, pressure drop and liquid side volumetric mass transfer coefficient (kLa) have been presented. It was shown that the measured Taylor bubble velocity in square microchannels could be well interpreted based upon an approximate measurement of the liquid film profile therein. Then, the obtained two-phase frictional pressure drop values in both microchannels were found to be significantly higher than the predictions of the correlation proposed by Kreutzer et al. [2005b. Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. A.I.Ch.E. Journal 51, 2428-2440] when the liquid slug was very short, which can be explained by the inadequacy of their correlation to describe the excess pressure drop caused by the strong inner circulation in such short liquid slugs. An appropriate modification has been made to this correlation in order to improve its applicability in microchannels. Finally, the experimental (kLa) values in the microchannel with hydraulic diameter of 400 μm were found to be in poor agreement with those predicted by the existing correlations proposed for capillaries with diameters of several millimeters. The observed deviation was mainly due to the fact that mass transfer experiments in this microchannel actually corresponded to the case of short film contact time and rather poor mixing between the liquid film and the liquid slug, which was not in accordance with mass transfer assumptions associated with these correlations. A new empirical correlation has been proposed to describe mass transfer data in this microchannel.  相似文献   

3.
The wetting efficiency of liquid trickle flow over a fixed bed reactor has been measured for a wide range of parameters including operating conditions, bed structure and physico-chemistry of liquid/solid phases. This data bank has been used to develop a new correlation for averaged wetting efficiency based on five different non-dimensional numbers. Finally liquid/solid mass transfer has been determined in partial wetting conditions to analyse what are the respective effects of wetting and liquid/gas flow turbulence. These effects appear to be separated: wetting being acting on liquid/solid interfacial area while the liquid/solid mass transfer coefficient is mainly connected to flow turbulence through the interstitial liquid velocity. A correlation has been proposed for liquid/solid mass transfer coefficient at very low liquid flow rate.  相似文献   

4.
According to literature, few experiments are performed in organic solvents which are mostly used in commercial gas-liquid reactors. However, it is commonly accepted that data obtained in aqueous solution allow to predict the surface tension effects, and to model the behaviour of organic solvents. In this work, we examine the validity of this approximation.In this objective, the flows observed in two pure media having similar viscosity but different surface tension—respectively, water (reference) and cyclohexane (solvent)—are successively compared at two scales: in a bubble column and in bubble plumes.In bubble plumes, as expected, the mean bubble size is smaller in the medium having the smallest surface tension (cyclohexane), but for this medium the destabilisation of flow is observed to occur at smaller gas velocity, due to break-up and coalescence phenomena. In bubble column, these phenomena induce the bubbling transition regime at lower gas velocity, whatever the operating conditions for liquid phase: batch or continuous. Consequently, when the two media are used at similar gas superficial velocity, but in different hydrodynamic regimes, greater gas hold-up and smaller bubble diameter can be observed in water; the interfacial area is then not always higher in cyclohexane.This result differs from the behaviour observed in the literature for aqueous solutions. The analysis of bubble plumes in aqueous solutions of butanol shows that this difference is due to a fundamental difference in coalescent behaviour between pure solvents and aqueous mixtures: the surface tension effect is less important in pure liquid than in aqueous solutions, because of the specific behaviour of surfactants.It is then still difficult to predict a priori the bubbling regime or the flow characteristics for a given medium, and all the more to choose an appropriate liquid as a model for industrial solvents.  相似文献   

5.
Due to the limited availability of chemical reactants in the early process development of pharmaceuticals and fine chemicals, and sometimes the high-cost of catalyst, it is increasingly popular to use milliliter-scale slurry reactors with reaction volumes of 20 ml or less to screen catalyst candidates for three-phase reactions. To ensure the success of catalyst screening, it is advantageous to run reactions under kinetically controlled conditions so that the activities of different catalysts can be compared. Because catalysts with small particle sizes are used in slurry reactors, the reactions are susceptible to gas-liquid mass transfer limitations. This work presents an efficient way of enhancing gas-liquid mass transfer in milliliter-scale reactors through the use of magnetically driven agitation with complex motion. In the reactor described here, gas-liquid mass transfer coefficients can be doubled over those obtained with the agitation technique used in commercial milliliter-scale units. In addition, the reactor can achieve the top range of mass transfer coefficients obtained in a full-scale reactor. This work also presents the first measurements of gas-liquid mass transfer coefficients in milliliter-scale reactors, which are two orders-of-magnitude smaller than systems for which mass transfer coefficients have been reported earlier. Both physical and chemical absorption techniques are used.  相似文献   

6.
The addition of select polymer beads to stirred tank bioscrubber systems has been shown to greatly enhance the removal and treatment of toxic VOCs via the capture and sequestration of poorly soluble compounds such as benzene, and the release of these materials, based on equilibrium partitioning, to microorganisms in the aqueous phase. In this study, oxygen volumetric mass transfer coefficients were determined for an 11 L airlift vessel containing tap water alone, tap water with Nylon 6,6 polymer beads (10% v/v), and tap water with silicone rubber beads (10% v/v), over various inlet gas flow rates, with the aim of initially characterizing a low-energy pneumatically agitated reactor (concentric tube airlift). In addition, oxygen transfer rates into the airlift with and without polymers with high oxygen affinity were determined. To further characterize this reactor system, a residence time distribution analysis was completed to determine hydrodynamic parameters including the Peclet number (Pe), circulation time (tc) and mixing time (tm) over various gas flow rates for the airlift containing tap water with and without silicone rubber. It was found that the addition of silicone rubber beads, which has a high affinity for oxygen, reduced the measured volumetric mass transfer coefficient relative to a system without polymers due to oxygen sorption during the dynamic period of testing, but increased the overall amount of oxygen that was transferred to the system during the dynamic period. The addition of Nylon 6,6, which has very low oxygen uptake, allowed for estimation of the physical effect of solids addition on gas-liquid mass transfer and it was found that there was no effect on the measured volumetric mass transfer coefficient relative to a system without polymers. However, hydrodynamic parameters revealed that the addition of silicone rubber into an airlift vessel improves liquid phase mixing. This investigation has defined key operational features of a low-energy three-phase airlift bioscrubber system for the treatment of toxic VOC substrates.  相似文献   

7.
Volatile organic compounds (VOCs) cause nuisance to humans and the environment. Recent legislation encourages industrialists to set up equipment for treating their VOC-loaded gaseous effluents. This piece of research studies the absorption process, using a viscous organic absorbent (di(2-ethylhexyl) adipate=DEHA) to treat a toluene-loaded vent gas, in terms of hydrodynamics and mass transfer. It is shown that DEHA does not lead to an excessive pressure drop. Correlations predicting hydrodynamic parameters from previous literature are summarised and tested against experimental results. It is shown that acceptable prediction accuracy can be achieved for counter-current pressure drop and liquid hold-up. Treatment efficiency for the toluene-loaded vent gas is shown to be very good. Calculation of mass transfer constants (kLa) enables to test literature correlations against the experimental results. The mass transfer is supposed to be limited by the liquid-side resistance. Our experimental results showed that the kLa of the system depends on the liquid velocity but also on the gas velocity. This behaviour has also been observed by the few authors who have used viscous fluids in their experiments, but is contrary to all the authors who have work on low-viscosity fluids. It is therefore clear that the influence of viscosity on the phenomenon is considerable. Not one current correlation is currently accurate in the case of a viscous absorbent.  相似文献   

8.
Researches on two-phase transfer and reaction processes in microchannnels are important to the design of multiphase microchemical systems. In the present work, hydrodynamics and mass transfer characteristics in cocurrent gas-liquid flow through a horizontal rectangular microchannel with a hydraulic diameter of have been investigated experimentally. Liquid side volumetric mass transfer coefficients were measured by absorbing pure CO2 into water and a 0.3 M NaHCO3 / 0.3 M Na2CO3 buffer solution. Interfacial areas were determined by absorbing pure CO2 into a 1 M NaOH solution. Two-phase flow patterns and pressure drop data were also obtained and analyzed. This paper shows that two-phase frictional pressure drop in the microchannel can be well predicted by the Lockhart-Martinelli method if we use a new correlation of C value in the Chisholm's equation. Liquid side volumetric mass transfer coefficient and interfacial area as high as about and , respectively, can be achieved in the microchannel. Generally, liquid side volumetric mass transfer coefficient increases with the increasing superficial liquid or gas velocity, which can be described satisfactorily by the developed empirical correlations. A comparison of mass transfer performance among different gas-liquid contactors reveals that the gas-liquid microchannel contactor of this study can provide at least one or two orders of magnitude higher liquid side volumetric mass transfer coefficients and interfacial areas than the others.  相似文献   

9.
We consider the liquid-side mass transfer coefficient kL in a dense bubble swarm for a wide range of gas volume fraction (0.45%≤αG≤16.5%). The study is performed for an air–water system in a square column. Bubble size, shape and velocity have been measured for different gas flow rates by means of a high speed camera. Gas volume fraction and bubble velocity have also been measured by a dual-tip optical probe. Both of these measurements show that the bubble vertical velocity decreases when increasing αG in agreement with previous investigations. The mass transfer is measured from the time evolution of the dissolved oxygen concentration, which is obtained by the gassing-out method. The mass transfer coefficient is found to be very close to that of a single bubble provided the bubble Reynolds number is based on the average equivalent diameter 〈deq〉 and the vertical slip velocity 〈Vz〉.  相似文献   

10.
The objective of this study was to characterize the two-phase flow hydrodynamic behaviour and mass transfer in a static mixer in a horizontal pipe. Different arrangements of elements of the static mixer were tested and their performances compared. The pressure drop, bubble diameters and mass transfer coefficient were measured. The influence of operating conditions was also studied. A different correlations are proposed and compared with other correlations found in the literature.  相似文献   

11.
Hydrodynamics of a novel multi-stage external loop airlift reactor   总被引:1,自引:0,他引:1  
In the present investigation a novel multi-stage external loop airlift reactor with hydro-dynamically induced continuous bubble generation, breakup and regeneration has been proposed. The system has been designed to operate with relatively large sized bubbles, so that interfacial circulation can be induced in the liquid-bubble interfaces and faster transfer of components can take place by turbulent diffusion through the interface of the bubbles and also due to the physical rupture and reformation of the bubbles. The system was also designed to operate in three stages operating in series so that in each stage completely deaerated liquid could be brought in contact with freshly generated bubbles. Detailed studies on the gas holdup and liquid circulation velocity have been carried out with respect to various values of superficial gas as well as liquid velocities. The gas holdup of the proposed multi-stage system is 45% higher than the single stage system, which results in better mass transfer characteristics. Empirical correlations describing the performance of the proposed reactor have been presented in this paper.  相似文献   

12.
13.
Distillation is the most common separation technology utilized in the petroleum and chemistry industries. Due to the wide usage of the distillation column, even a small improvement in performance may result in significant energy cost savings. Aiming to improve the hydrodynamics and mass transfer performance, the flow-guided trapezoid spray-packing tray (FTS-PT) was designed by combining flow-guided holes and trapezoidal caps with structured packing. And the experimental measurements of the FTS-PT, including pressure drop, clear liquid height, weeping, entrainment, and tray efficiency, were conducted in a 500 mm diameter plexiglass column with the air-water-oxygen system. Moreover, the performance of the FTS-PT was compared with that of new vertical sieve tray (New VST) and F1 valve tray. The results show that FTS-PT has a significant advantage in pressure drop, entrainment, and capacity. Furthermore, the calculation model of the pressure drop was derived and used for the FTS-PT with a relative deviation of less than 5%.  相似文献   

14.
循环曝气生物反应器的流体力学和传质特性   总被引:1,自引:1,他引:0       下载免费PDF全文
陈英  陈荣市  陈新  陈东 《化工学报》2012,63(10):3284-3290
循环曝气生物反应器是一种具有曝气筒的用于废水处理的生物反应器,曝气筒外为下降区,常常填充填料作为微生物生长的载体。从循环液量(Vl)、环流液速(Uld)以及停留时间分布函数的量纲1方差(σθ2)等方面研究了循环曝气生物反应器的流体力学性能和传质特性。研究表明,在下降区内有或无填料以及不同曝气筒截面积与反应器截面积比值(Ar/Are)的情况下,循环曝气生物反应器内的循环液量与气体流量之间均符合幂函数关系,Ar/Are对循环液量或循环液速的影响是先增后减,极值点为0.11。下降区放置填料降低了循环液量、循环液速,但提高了σθ2,改善了液相传质性能。当Ar/Are为0.11时,在液体进料为0.1 m3·h-1、气体流为量0.5~3.1 m3·h-1的情况下,循环曝气生物反应器内的液相循环量是液相进料的9~28倍、σθ2为0.9以上,循环曝气生物反应器具有较好的液相混合和稀释能力,可直接处理高浓度废水。  相似文献   

15.
16.
A carbon nanofiber (CNF)/graphite felt composite was synthesized by growing CNFs on the surface of graphite fibers and was used as the packing of a fixed bed reactor under two phase flow conditions. The pressure drop, axial dispersion and mass transfer in the liquid were studied by experiment and by piston dispersion exchange (PDE) model. It was shown that the pressure drop and total liquid up could be predicted by the slit model in an acceptable accuracy. The axial dispersion in the liquid phase in the composite and the mass transfer between the dynamic and static liquid are higher than in the packed bed of solid particles owing to the porous and fluffy CNF layer on the carbon felt fiber.  相似文献   

17.
The influences of operating parameters such as channel size, flow rate, and void fraction on the mass transfer rate in the gas–liquid slug flow are investigated to establish a design method to determine the parameters for rapid mass transfer. From the experimental results, the turnover index, including the slug linear velocity, its length, and the channel size that represents the turnover frequency of the internal circulation flow, is proposed. For PTFE tube in which no liquid film exists in slug flow, a master curve is derived from the relationship between the mass transfer coefficient and the turnover index. For each channel material, the Sherwood number is also roughly correlated with the Peclet number. These correlations make it possible to arbitrarily determine a set of operating parameters to achieve the desired mass transfer rate. However, the turnover index and the Peclet number include the slug length, which cannot be controlled directly. The relationship between the slug length and the operating parameters is also investigated. The slug volume mainly depends on the inner diameter (i.d.) of a union tee. At a fixed union tee i.d., the slug length is controlled through the exit i.d. of the channel connected to the union tee and the void fraction. Thus, the final slug length depends on the union tee and exit channel inner diameters. At low flow rates, the gas and liquid collision angle is significant in determining the slug length.  相似文献   

18.
This paper studies flow characteristics and their effect on local mass transfer rate to a flat plate electrode in a FM01-LC electrochemical reactor. 3D reactor simulations under limiting current and turbulent flow conditions were performed using potassium ferro-ferricyanide electrochemical system with sodium sulfate as supporting electrolyte. The model consists of mass-transport equations coupled to hydrodynamic solution obtained from Reynolds-averaged Navier–Stokes equations using standard k? turbulence model, where the average velocity field, the turbulence level given by the eddy kinetic energy and the turbulent viscosity of the hydrodynamic calculation were used to evaluate the convection, turbulent diffusion and the concentration wall function. The turbulent mass diffusivity was evaluated by Kays–Crawford equation using heat and mass transfer analogies, while wall functions, for mass transport, were adapted from Launder–Spalding equations. Simulation results describe main flow properties, concentration profiles throughout the entire volume of the reactor and local diffusion flux over the electrode. Overall mass transfer coefficients estimated by simulation, without fitting parameters, agree closely with experimental coefficients determined from limiting current measurements (1.85% average error) for Re between 187 and 1407.  相似文献   

19.
The flow of two immiscible fluids was investigated in rectangular glass microchannels with equivalent diameters of 269 and . Deionised water, dyed toluene and hexane were selected as probe fluids. Flow patterns were obtained for Y- and T-junction of two micro-channels and monitored by a photo-camera. Volumetric velocities of water and organic phase varied between 1 and 6 ml/h. The formation mechanism of slug and parallel flow was studied and the mass transfer performances of two flow patterns were compared. The shape of the interface between the immiscible liquids was controlled by a competition between the viscous forces and the local interfacial tension. The flow patterns could be correlated with the mean Capillary and Reynolds numbers. The mass transfer coefficients for parallel and slug flow were determined using instantaneous neutralisation (acid-base) reaction. The two flow patterns showed the same global volumetric mass transfer coefficients in the range of , being affected mainly by the base concentration in water for parallel flow and by the linear velocity in the case of the slug flow.  相似文献   

20.
In this work, the hydrodynamics and mass transfer in a gas–liquid dual turbine stirred tank reactor are investigated using multiphase computational fluid dynamics coupled with population balance method (CFD–PBM). A steady state method of multiple frame of reference (MFR) approach is used to model the impeller and tank regions. The population balance for bubbles is considered using both homogeneous and inhomogeneous polydispersed flow (MUSIG) equations to account for bubble size distribution due to breakup and coalescence of bubbles. The gas–liquid mass transfer is implemented simultaneously along with the hydrodynamic simulation and the mass transfer coefficient is obtained theoretically using the equation based on the various approaches like penetration theory, slip velocity, eddy cell model and rigid based model. The CFD model predictions of local hydrodynamic parameters such as gas holdup, Sauter mean bubble diameter and interfacial area as well as averaged quantities of hydrodynamic and mass transfer parameters for different mass transfer theoretical models are compared with the reported experimental data of [Alves et al., 2002a] and [Alves et al., 2002b] . The predicted hydrodynamic and mass transfer parameters are in reasonable agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号