首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The selective production of hydrogen via steam reforming of methanol (SRM) was performed using prepared catalysts at atmospheric pressure over a temperature range 200–260C. Reverse water gas shift reaction and methanol decomposition reactions also take place simultaneously with the steam reforming reaction producing carbon monoxide which is highly poisonous to the platinum anode of PEM fuel cell, therefore the detailed study of effect of catalyst preparation method and of different promoters on SRM has been carried out for the minimization of carbon monoxide formation and maximization of hydrogen production. Wet impregnation and co-precipitation methods have been comparatively examined for the preparation of precursors to Cu(Zn)(Al2O3) and Cu(Zn)(Zr)(Al2O3). The catalyst preparation method affected the methanol conversion, hydrogen yield and carbon monoxide formation significantly. Incorporation of zirconia in Cu(Zn)(Al2O3) catalyst enhanced the catalytic activity, hydrogen selectivity and also lower the CO formation. Catalyst Cu(Zn)(Zr)(Al2O3) with composition Cu/Zn/Zr/Al:12/4/4/80 prepared by co-precipitation method was the most active catalyst giving methanol conversion up to 97% and CO concentration up to 400 ppm. Catalysts were characterized by atomic absorption spectroscopy (AAS), Brunauer-Emett-Teller (BET) surface area, pore volume, pore size and X-ray powder diffraction (XRPD). The XRPD patterns revealed that the addition of zirconia improves the dispersion of copper which resulted in the better catalytic performance of Cu(Zn)(Zr)(Al2O3). The time-on-stream (TOS) catalysts stability test was also conducted for which the Cu(Zn)(Zr)(Al2O3) catalyst gave the consistent performance for a long time compared to other catalysts.  相似文献   

2.
This review discusses the use of iron- or copper-based solid catalysts in the wet oxidation using H2O2 as oxidant of organic molecules present in agro-food and industrial waste aqueous streams. After an introduction on the advantages and limits of using wet hydrogen peroxide catalytic oxidation (WHPCO) as opposite to wet air catalytic oxidation (WACO), the contribution shortly analyses recent results in the field in order to evidence new trends and open issues. More specific examples discussed regard the performances of Fe/zeolite and Fe-containing pillared clays in the oxidation of selected molecules (p-coumaric acid, propionic acid) of relevance for the treatment of organic waste from agro-food production (with reference especially to olive oil milling wastewater). The application of WHPCO in the treatment of complex effluents from electronic industry is also shortly discussed.  相似文献   

3.
The catalytic activity of a hybrid compound [Fe(salen)-POM] (1) consisting of Fe(III)(salen)Cl [H2salen = N,N′-bis(salicylidene)ethylenediamine] complex covalently linked to a Keggin type polyoxometalate, K8SiW11O39, (POM) was studied in the oxidation of various olefins in acetonitrile, using hydrogen peroxide as oxygen source. While, [Fe(salen)-POM] catalyst showed moderate to good catalytic activity and product selectivity in the oxidation reactions, the complex Fe(III)(salen)Cl showed poor catalytic activity in these reactions. The effect of other parameters such solvent, oxidant, temperature and the metal type in Schiff base complex were also investigated.  相似文献   

4.
The reforming process of gasoline is an attractive technique for fuel processor or hydrogen station applications. We investigated catalytic autothermal reforming (ATR) of iso-octane and toluene over transition metal supported catalysts. The catalysts were prepared by an incipient wetness impregnation method and characterized by N2 physisorption, XRD, and TEM techniques before and after the reaction. Many of the tested catalysts displayed reasonably good activity towards the reforming reactions of iso-octane. Especially, Ni/Fe/MgO/Al2O3 catalyst showed more activity than the other catalysts tested in this study including commercial HT catalyst. Ni/Fe/MgO/Al2O3 catalyst showed good stability for 700 h in the ATR of iso-octane. No major change was observed in catalytic activity in ATR of iso-octane or in the structure of catalyst. Since iso-octane, toluene are surrogates of gasoline, Ni/Fe/MgO/Al2O3 catalyst can be considered as ATR catalyst for gasoline fuel processor and hydrogen station systems.  相似文献   

5.
The selective production of hydrogen via steam reforming of methanol (SRM) was performed using prepared catalysts at atmospheric pressure over a temperature range 200–260°C. Reverse water gas shift reaction and methanol decomposition reactions also take place simultaneously with the steam reforming reaction producing carbon monoxide which is highly poisonous to the platinum anode of PEM fuel cell, therefore the detailed study of effect of catalyst preparation method and of different promoters on SRM has been carried out for the minimization of carbon monoxide formation and maximization of hydrogen production. Wet impregnation and co-precipitation methods have been comparatively examined for the preparation of precursors to Cu(Zn)(Al2O3) and Cu(Zn)(Zr)(Al2O3). The catalyst preparation method affected the methanol conversion, hydrogen yield and carbon monoxide formation significantly. Incorporation of zirconia in Cu(Zn)(Al2O3) catalyst enhanced the catalytic activity, hydrogen selectivity and also lower the CO formation. Catalyst Cu(Zn)(Zr)(Al2O3) with composition Cu/Zn/Zr/Al:12/4/4/80 prepared by co-precipitation method was the most active catalyst giving methanol conversion up to 97% and CO concentration up to 400 ppm. Catalysts were characterized by atomic absorption spectroscopy (AAS), Brunauer-Emett-Teller (BET) surface area, pore volume, pore size and X-ray powder diffraction (XRPD). The XRPD patterns revealed that the addition of zirconia improves the dispersion of copper which resulted in the better catalytic performance of Cu(Zn)(Zr)(Al2O3). The time-on-stream (TOS) catalysts stability test was also conducted for which the Cu(Zn)(Zr)(Al2O3) catalyst gave the consistent performance for a long time compared to other catalysts.  相似文献   

6.
Silsesquioxanes containing tetrapodal titanium species and alkenylsilyl groups were immobilized onto dimethylsilyl-functionalized silica having mesopores by chemical tethering via hydrosilylative reaction in the presence of a Pt catalyst. The immobilized catalysts showed higher activity than their corresponding homogeneous catalyst towards the epoxidation of cyclooctene by tert-butylhydroperoxide, probably because of the improvement of the micro-environment around the titanium center. The reaction was found to be truly heterogeneous, since no further reaction proceeded after the separation of the catalyst by filtration. These catalysts also showed excellent catalytic activity for the epoxidation using hydrogen peroxide as an oxidant, while the parent homogeneous catalysts did not show any activity at all.  相似文献   

7.
Photodegradation of phenol was investigated with two types of oxidant agents in water, oxygen and hydrogen peroxide, at two different reaction pH with a series of nanosized iron-doped anatase TiO2 catalysts with different iron contents. The catalysts have been prepared by a sol–gel/microemulsion method. Firstly, iron-doped titania catalysts were studied with respect to their activity behavior when oxygen was used as oxidant agent in the photocatalytic degradation of aqueous phenol in comparison with un-doped reference catalysts. Secondly, two catalysts (TiO2 and 0.7 wt.% Fe-doped TiO2) were selected to extend the study for the employment of hydrogen peroxide as oxidant at different concentrations and two initial reaction pHs. An enhancement of the photocatalytic activity is observed only for relatively low doping level (ca. 0.7 wt.%) in catalyst calcined at 450 °C preferably using hydrogen peroxide as oxidant agent which is attributable to the partial introduction of Fe3+ cations into the anatase structure. Nevertheless, it has been demonstrated that catalyst surface properties can play an important role during phenol photodegradation process on the basis of the analysis of differences found in the photoactivity as a function of reaction pH.  相似文献   

8.
Fe/Al2O3 catalysts with different Fe loadings (10-90 mol%) were prepared by hydrothermal method. Ethanol decomposition was studied over these Fe/Al2O3 catalysts at temperatures between 500 and 800 °C to produce hydrogen and multi-walled carbon nanotubes (MWCNTs) at the same time. The results showed that the catalytic activity and stability of Fe/Al2O3 depended strongly on the Fe loading and reaction temperature. The Fe(30 mol%)/Al2O3 and Fe(40 mol%)/Al2O3 were both the effective catalyst for ethanol decomposition into hydrogen and MWCNTs at 600 °C. Several reaction pathways were proposed to explain ethanol decomposition to produce hydrogen and carbon (including nanotube) at the same time.  相似文献   

9.
A Cu/ZnO/Al2O3 nanocatalyst was applied for hydrogen production via steam reforming of methanol in a fixed‐bed reactor. Modified forms of the catalyst were prepared by adding small amounts of Ba, Zr, and Ce oxides. The catalysts were characterized by means of N2 adsorption‐desorption, X‐ray diffraction, and scanning electron microscope techniques. Full factorial design was used to optimize the required number of experiments and evaluate the catalytic activity in a fixed‐bed reactor. The oxide additives reduced the production of carbon monoxide and increased the selectivity of carbon dioxide as well as the yield of hydrogen production. Among the studied catalysts, the Cu/ZnO/Al2O3/CeO2/ZrO2 catalyst presented the best performance.  相似文献   

10.
This study concerns the efficient electrochemical reduction of molecular oxygen (O2), in O2-saturated 0.1 M KOH solution, to OH through a four-electron reduction pathway by a novel binary catalyst that is comprised of two kinds of catalysts, i.e., Au nanoparticles (nano-Au) and manganese oxide nanoparticles (nano-MnOx) electrodeposited onto a relatively inert substrate, e.g., glassy carbon (GC) electrode. The nano-Au catalyst is efficiently used for the electro-reduction of O2 to hydrogen peroxide through a two-electron reduction pathway at a reasonably low overpotential. While the latter (i.e., nano-MnOx) is effectively used for the subsequent catalytic decomposition of the electrogenerated hydrogen peroxide to water and molecular oxygen. The dependence of the electrocatalytic activity of the proposed binary catalysts towards the oxygen reduction on the loading level of both species has been investigated in this paper. This is done aiming at the preparation of a binary catalyst composed of the optimum amounts of both species which supports an apparent four-electron reduction of O2 at sufficiently low overpotential in replacement of the costly Pt-based electrocatalysts.  相似文献   

11.
The recent reported pathway using oxygen and formic acid at ambient conditions has been utilized to generate hydrogen peroxide in situ for the degradation of phenol. An alumina supported palladium catalyst prepared via impregnation was used for this purpose. Almost full destruction of phenol was carried out within 6 h corresponding to the termination of 100 mM formic acid at the same time. In addition, a significant mineralization (60%) was attained. A simulated conventional Fenton process (CFP) using continuous addition of 300 ppm H2O2 displayed maximum 48% mineralization. Study of different doses of formic acid showed that decreasing the initial concentration of formic acid caused faster destruction of phenol and its toxic intermediates. The catalytic in situ generation of hydrogen peroxide system demonstrated interesting ability to oxidize phenol without the addition of Fenton's catalyst (ferrous ion). Lower Pd content catalysts (Pd1/Al and Pd0.5/Al) despite of producing higher hydrogen peroxide amount for bulk purposes, did not reach the same efficiency as the Pd5/Al catalyst in phenol degradation. The later catalyst showed a remarkable repeatability so that more than 90% phenol degradation along with 57% mineralization was attained by the used catalyst after twice recovery. Higher temperature (45 °C) gave rise to faster degradation of phenol resulting to almost the same mineralization degree as obtained at ambient temperature. Meanwhile, Pd leaching studied by atomic adsorption proved excellent stability of the catalysts.  相似文献   

12.
Catalytic conversion of CO2 to methanol is gaining attention as a promising route to using carbon dioxide as a new carbon feedstock. AlOOH supported copper-based methanol synthesis catalyst was investigated for direct hydrogenation of CO2 to methanol. The bare AlOOH catalyst support was found to have increased adsorption capacity of CO2 compared to conventional Al2O3 support by CO2 temperature-programmed desorption (TPD) and FT-IR analysis. The catalytic activity measurement was carried out in a fixed bed reactor at 523 K, 30 atm and GHSV 6,000 hr?1 with the feed gas of CO2/H2 ratio of 1/3. The surface basicity of the AlOOH supported Cu-based catalysts increased linearly according to the amount of AlOOH. The optimum catalyst composition was found to be Cu : Zn : Al=40 : 30 : 30 at%. A decrease of methanol productivity was observed by further increasing the amount of AlOOH due to the limitation of hydrogenation rate on Cu sites. The AlOOH supported catalyst with optimum catalyst compositions was slightly more active than the conventional Al2O3 supported Cu-based catalyst.  相似文献   

13.
This paper demonstrates the benefit of using spinel (ZnAl2O4) as a support for copper catalysts in hydrogen generation. We have investigated the influence of catalyst pre-treatment, support composition and copper content on the physicochemical and catalytic properties of copper catalysts supported on ZnxAlyOx+1.5y in the methanol steam reforming. The physicochemical properties of the catalysts were examined by X-ray diffraction, temperature-programmed reduction, specific surface area and porosity, X-ray photoelectron spectroscopy, FTIR and chemisorption methods. The reduced copper catalysts showed higher conversion of methanol and higher hydrogen production. We also found that the presence of Cu+ and Cu0 species on the catalyst surface strongly influences the reaction yield and hydrogen production. FTIR measurements performed for copper catalysts confirmed that increasing of aluminium content in the case of catalytic systems caused the growth of adsorbed species on the catalyst surface.  相似文献   

14.
Methane decomposition reaction has been studied at three different activation temperatures (500 °C, 800 °C and 950 °C) over mesoporous alumina supported Ni–Fe and Mn–Fe based bimetallic catalysts. On co-impregnation of Ni on Fe/Al2O3 the activity of the catalyst was retained even at the high activation temperature at 950 °C and up to 180 min. The Ni promotion enhanced the reducibility of Fe/Al2O3 oxides showing higher catalytic activity with a hydrogen yield of 69%. The reactivity of bimetallic Mn and Fe over Al2O3 catalyst decreased at 800 °C and 950 °C activation temperatures. Regeneration studies revealed that the catalyst could be effectively recycled up to 9 times. The addition of O2 (1 ml, 2 ml, 4 ml) in the feed enhanced substantially CH4 conversion, the yield of hydrogen and the stability of the catalyst.  相似文献   

15.
Titanium silicalite molecular sieves, TS-1 and TS-2 having MFI and MEL structures, respectively, catalyze the oxidation of secondary amines to the corresponding hydroxylamines using hydrogen peroxide as the oxidant. Higher concentrations of H2O2 lead to further oxidation of hydroxylamine to nitrone. Diffuse reflectance spectroscopy shows the formation of a titanium peroxo complex upon addition of hydrogen peroxide to the TS-1 catalyst. The titanium peroxo complex oxidizes the substrate and reforms to a titanyl group.  相似文献   

16.
The co-production of hydrogen and carbon nanotubes (CNTs) from the decomposition of ethanol over Fe/Al2O3 at different temperatures and feeding rates of ethanol was investigated systematically. The results indicated that Fe/Al2O3 was a quite active catalyst for the co-production of hydrogen and CNTs and that its activity and stability depended strongly on the Fe loading. Among all catalysts tested, 10 mol% Fe/Al2O3 was the most effective catalyst based on the ratio of hydrogen production, the total H2 yield, and the quality of the CNTs formed. The efficiency of hydrogen production from ethanol decomposition over 10 mol% Fe/Al2O3 reached a maximum of 80% at 800 °C and the yield of CNTs with well-oriented growth and uniform diameter was 141%. In addition, the reaction of hydrogen and CNTs co-produced from ethanol decomposition was proposed.  相似文献   

17.
Hydrogen production by partial oxidation of methanol (POM) was investigated over Au–Ru/Fe2O3 catalyst, prepared by deposition–precipitation. The activity of Au–Ru/Fe2O3 catalyst was compared with bulk Fe2O3, Au/Fe2O3 and Ru/Fe2O3 catalysts. The reaction parameters, such as O2/CH3OH molar ratio, calcination temperature and reaction temperature were optimized. The catalysts were characterized by ICP, XRD, TEM and TPR analyses. The catalytic activity towards hydrogen formation is found to be higher over the bimetallic Au–Ru/Fe2O3 catalyst compared to the monometallic Au/Fe2O3 and Ru/Fe2O3 catalysts. Bulk Fe2O3 showed negligible activity towards hydrogen formation. The enhanced activity and stability of the bimetallic Au–Ru/Fe2O3 catalyst has been explained in terms of strong metal–metal and metal–support interactions. The catalytic activity was found to depend on the partial pressure of oxygen, which also plays an important role in determining the product distribution. The catalytic behavior at various calcination temperatures suggests that chemical state of the support and particle size of Au and Ru plays an important role. The optimum calcination temperature for hydrogen selectivity is 673 K. The catalytic performance at various reaction temperatures, between 433 and 553 K shows that complete consumption of oxygen is observed at 493 K. Methanol conversion increases with rise in temperature and attains 100% at 523 K; hydrogen selectivity also increases with rise in temperature and reaches 92% at 553 K. The overall reactions involved are suggested as consecutive methanol combustion, partial oxidation, steam reforming and decomposition. CO produced by methanol decomposition is subsequently transformed into CO2 by the water gas shift and CO oxidation reactions.  相似文献   

18.
The direct synthesis of hydrogen peroxide from H2 and O2 using a range of supported Au–Pd alloy catalysts is compared for different supports using conditions previously identified as being optimal for hydrogen peroxide synthesis, i.e. low temperature (2 °C) using a water–methanol solvent mixture and short reaction time. Five supports are compared and contrasted, namely Al2O3, -Fe2O3, TiO2, SiO2 and carbon. For all catalysts the addition of Pd to the Au only catalyst increases the rate of hydrogen peroxide synthesis as well as the concentration of hydrogen peroxide formed. Of the materials evaluated, the carbon-supported Au–Pd alloy catalysts give the highest reactivity. The results show that the support can have an important influence on the synthesis of hydrogen peroxide from the direct reaction. The effect of the methanol–water solvent is studied in detail for the 2.5 wt% Au–2.5 wt% Pd/TiO2 catalyst and the ratio of methanol to water is found to have a major effect on the rate of hydrogen peroxide synthesis. The optimum mixture for this solvent system is 80 vol.% methanol with 20 vol.% water. However, the use of water alone is still effective albeit at a decreased rate. The effect of catalyst mass was therefore also investigated for the water and water–methanol solvents and the observed effect on the hydrogen peroxide productivity using water as a solvent is not considered to be due to mass transfer limitations. These results are of importance with respect to the industrial application of these Au–Pd catalysts.  相似文献   

19.
Copper-based catalysts modified with aluminum precursors having different morphologies for methanol synthesis were prepared and the effect of the addition of aluminum emulsion on the characteristics of the catalyst was studied by using X-ray diffraction (XRD), temperature-programmed reduction (TPR) and differential thermal gravity (DTG). The experiment results show that the copper-based catalyst prepared by mixing a Cu-Zn precipitate with an amorphous aluminum emulsion prepared in advance by precipitating an aluminum salt with ammonia exhibits higher specific surface area and catalytic performance for methanol synthesis from synthesis gas. The catalysts thus prepared were found to have more (Cu,Zn)2CO3(OH)2 phase, from which more Cu/Zn sosoloid was produced during calcination. More sosoloid phase produced and stronger synergy between Cu and ZnO were verified to enhance the activity of the catalyst for methanol synthesis.  相似文献   

20.
Direct synthesis of hydrogen peroxide from H2 and O2 was performed over supported gold catalysts. The catalysts were characterized by means of UV–vis, H2-TPR, TEM and XPS. Based on the results we conclude that metallic Au is the active species in the direct synthesis of hydrogen peroxide from H2 and O2. During preparation process of catalyst by deposition–precipitation with urea, the pH value increased and the gold particle size decreased with increasing the urea concentration. The catalyst prepared with higher urea concentration showed a higher activity and its stability also was efficiently improved. Gold nanoparticles, supported on TiO2 or Ti contained supports, gave a higher catalytic activity. Thiophene can be efficiently oxidized by hydrogen peroxide synthesized in situ from H2 and O2 over Au/TS-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号