共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical prediction of flow regime transition in bubble columns was studied based on the bubble size distribution by the population balance model (PBM). Models for bubble coalescence and breakup due to different mechanisms, including coalescence due to turbulent eddies, coalescence due to different bubble rise velocities, coalescence due to bubble wake entrainment, breakup due to eddy collision and breakup due to large bubble instability, were proposed. Simulation results showed that at relatively low superficial gas velocities, bubble coalescence and breakup were relatively weak and the bubble size was small and had a narrow distribution; with an increase in the superficial gas velocity, large bubbles began to form due to bubble coalescence, resulting in a much wider bubble size distribution. The regime transition was predicted to occur when the volume fraction of small bubbles sharply decreased. The predicted transition superficial gas velocity was about 4 cm/s for the air-water system, in accordance with the values obtained from experimental approaches. 相似文献
2.
Bo Zhang Lingtong Kong Haibo Jin Guangxiang He Suohe Yang Xiaoyan Guo 《中国化学工程学报》2018,26(6):1350-1358
In this study, based on the Luo bubble coalescence model, a model correction factor Ce for pressures according to the literature experimental results was introduced in the bubble coalescence efficiency term. Then, a coupled modified population balance model (PBM) with computational fluid dynamics (CFD) was used to simulate a high-pressure bubble column. The simulation results with and without Ce were compared with the experimental data. The modified CFD-PBM coupled model was used to investigate its applicability to broader experimental conditions. These results showed that the modified CFD-PBM coupled model can predict the hydrodynamic behaviors under various operating conditions. 相似文献
3.
Rachid Bannari Fouzi Kerdouss Brahim Selma Abdelfettah Bannari Pierre Proulx 《Computers & Chemical Engineering》2008,32(12):3224-3237
Computational fluid dynamics (CFD) simulations of bubble columns have received recently much attention and several multiphase models have been developed, tested, and validated through comparison with experimental data. In this work, we propose a model for two-phase flows at high phase fractions. The inter-phase forces (drag, lift and virtual mass) with different closure terms are used and coupled with a classes method (CM) for population balance. This in order to predict bubble’s size distribution in the column which results of break-up and coalescence of bubbles. Since these mechanisms result greatly of turbulence, a dispersed k– turbulent model is used.The results are compared to experimental data available from the literature using a mean bubble diameter approach and CM approach and the appropriate formulations for inter-phase forces in order to predict the flow are highlighted.The above models are implemented using the open source package OpenFoam. 相似文献
4.
The constant bubble size modeling approach (CBSM) and variable bubble size modeling approach (VBSM) are frequently employed in Eulerian–Eulerian simulation of bubble columns. However, the accuracy of CBSM is limited while the computational efficiency of VBSM needs to be improved. This work aims to develop method for bubble size modeling which has high computational efficiency and accuracy in the simulation of bubble columns. The distribution of bubble sizes is represented by a series of discrete points, and the percentage of bubbles with various sizes at gas inlet is determined by the results of computational fluid dynamics (CFD)–population balance model (PBM) simulations, whereas the influence of bubble coalescence and breakup is neglected. The simulated results of a 0.15 m diameter bubble column suggest that the developed method has high computational speed and can achieve similar accuracy as CFD–PBM modeling. Furthermore, the convergence issues caused by solving population balance equations are addressed. 相似文献
5.
A computational fluid dynamic (CFD) model was developed with an improved source term based on previous work by Hagesaether et al. [1] for bubble break up and bubble coalescence to carry out numerical prediction of number density of different bubble class in turbulent dispersed flow. The numerical prediction was based on two fluid models, using the Eulerian–Eulerian approach where the liquid phase was treated as a continuum and the gas phase (bubbles) was considered as a dispersed phase. Bubble–bubble interactions, such as breakage due to turbulence and coalescence due to the combined effect of turbulence and laminar shear were considered. The result shows that the radial distributions of number densities of lower bubble classes are more than its higher counterpart. The result also shows that the Sauter mean diameter increases with the increase of height up to 1 m and then become steady. Simulated results are found to be in good agreement with the experimental data. 相似文献
6.
In the present work, an attempt has been made to combine population balance and a CFD approach for simulating the flow in oscillatory baffled column (OBC). Three-dimensional Euler-Euler two-fluid simulations are carried out for the experimental data of Oliveira and Ni [2001. Gas hold-up and bubble diameter in a gassed oscillatory baffled column. Chemical Engineering Science 56, 6143-6148]. The experimental data include the average hold-up profile and bubble size distribution in the OBC. All the non-drag forces (turbulent dispersion force, lift force) and the drag force are incorporated in the model. The coalescence and breakage effects of the gas bubbles are modeled according to the coalescence by the random collision driven by turbulence and wake entrainment while for bubble breakage by the impact of turbulent eddies. Predicted liquid velocity and averaged gas hold-up are compared with the experimental data. The profile of the mean bubble diameter in the column and its variation with the superficial gas velocity is studied. Bubble size distribution obtained by the model is compared with the experimental data. 相似文献
7.
The Eulerian–Lagrangian simulation of bubbly flow has the advantage of tracking the motion of bubbles in continuous fluid, and hence the position and velocity of each bubble could be accurately acquired. Previous simulation usually used the hard-sphere model for bubble–bubble interactions, assuming that bubbles are rigid spheres and the collisions between bubbles are instantaneous. The bubble contact time during collision processes is not directly taken into account in the collision model. However, the contact time is physically a prerequisite for bubbles to coalesce, and should be long enough for liquid film drainage. In this work we applied the spring-dashpot model to model the bubble collisions and the bubble contact time, and then integrated the spring-dashpot model with the film drainage model for coalescence and a bubble breakage model. The bubble contact time is therefore accurately recorded during the collisions. We investigated the performance of the spring-dashpot model and the effect of the normal stiffness coefficient on bubble coalescence in the simulation.The results indicate that the spring-dashpot model together with the bubble coalescence and breakage model could reasonably reproduce the two-phase flow field, bubble coalescence and bubble size distribution. The influence of normal stiffness coefficient on simulation is also discussed. 相似文献
8.
M. Elena Díaz Alfredo Iranzo Daniel Cuadra Rubn Barbero Francisco J. Montes Miguel A. Galn 《Chemical engineering journal (Lausanne, Switzerland : 1996)》2008,139(2):363-379
In the present work, a computational model based on an Eulerian–Eulerian approach was used for the simulation of the transient two-phase flow in a rectangular partially aerated bubble column. Superficial gas velocities (UG) ranging from 0.24 to 2.30 cm/s were used throughout both the experiments and the simulations. The calculated results were verified by comparing them with experimental data including measurements of gas hold-up, plume oscillation period (POP) and Sauter mean bubble diameter. The study shows the effect of mesh refinement, time-step and physical model selection, the latter regarding the role of bubble size distribution and non-drag forces, on the computational results. According to the results presented here, the representation of bubble populations using multiple size groups (MUSIG model) instead of a single group improves the prediction of the experimental parameters under study. Additionally, the results obtained after including the virtual mass force term do not differ considerably from those obtained including only the drag force. On the contrary, as a consequence of introducing the lift force term into the model, the gas hold-up is overestimated and a non-symmetric bubble plume oscillation appears, a fact that is not experimentally observed. 相似文献
9.
A novel model is presented which uses mass and momentum equations based on population balances to describe the dispersed phase of bubble columns. A set of integro-differential non-linear equations constitutes the model, which can be solved directly using the least-squares methods. The implementation for these is presented.The model presents a degree of flexibility, as different density functions (number, mass and volume) and different internal coordinates (bubble diameter, volume and mass) can be used.A simplified 1D model of a bubble column is solved using the least-squares spectral element method. The results obtained for two different gas volume fluxes at the inlet are compared with experiments by several authors. The simulations show good agreement with the measured data. 相似文献
10.
M.J. Hounslow 《Chemical engineering science》2004,59(4):819-828
This paper presents new population balance analysis to describe simultaneous coalescence and break-up in the formation of methylmethacrylate droplets in a batch oscillatory baffled reactor. It is concluded that the droplet data can very well be described by a model in which coalescence is taken to be shear induced, selection for break-up proceeds at a rate proportional to droplet volume and approximately four equally sized break-up fragments are produced per break-up event. It is shown that the experimental droplet size distribution data are self-similar in form and exhibit asymptotic behaviour characteristics also seen in the model. The coalescence rate is found to vary as the square of the oscillation frequency and the selection rate to vary with the oscillation frequency to the power five. As a result the asymptotic mean droplet volume is inversely proportional to the oscillation frequency. 相似文献
11.
A general CFD-PBE (computational fluid dynamics-population balance equation) solver for gas–liquid poly-dispersed flows of both low and high gas volume fractions is developed in OpenFOAM (open-source field operation and manipulation) in this work. Implementation of this solver in OpenFOAM is illustrated in detail. The PBE is solved with the cell average technique. The coupling between pressure and velocity is dealt with the transient PIMPLE algorithm, which is a merged PISO-SIMPLE (pressure implicit split operator-semi-implicit method for pressure-linked equations) algorithm. Results show generally good agreement with the published experimental data, whereas the modeling precision could be improved further with more sophisticated closure models for interfacial forces, the models for the bubble-induced turbulence and those for bubble coalescence and breakage. The results also indicate that the PBE could be solved out the PIMPLE loop to save much computation time while still preserving the time information on variables. This is important for CFD-PBE modeling of many actual gas–liquid problems, which are commonly high-turbulent flows with intrinsic transient and 3D characteristics. 相似文献
12.
Emulsion flows are very common in natural processes as well as in several engineering areas, such as in the process of desalting crude oil that occurs in refineries. This kind of flow is described as a polydispersed multiphase flow. In this work, we evaluated the behavior of water-in-oil emulsion flowing through a duct with an element used to mimic the effect of a globe valve. An Eulerian multi-fluid approach was employed by solving the population balance equation coupled with computational fluid dynamics. Coalescence and breakage models recently developed were extended to this inhomogeneous model. A bivariate population balance problem was also solved to demonstrate the mixing caused by the valve-like element. The simulated results showed good agreement with the available experimental data for the Sauter and DeBroukere mean diameters. 相似文献
13.
X.Y. Duan S.C.P. Cheung G.H. Yeoh J.Y. Tu E. Krepper D. Lucas 《Chemical engineering science》2011,(5):872
Gas–liquid bubbly flows with wide range of bubble sizes are commonly encountered in many industrial gas–liquid flow systems. To assess the performances of two population balance approaches – Average Bubble Number Density (ABND) and Inhomogeneous MUlti-SIze-Group (MUSIG) models – in tracking the changes of gas volume fraction and bubble size distribution under complex flow conditions, numerical studies have been performed to validate predictions from both models against experimental data of Lucas et al. (2005) and Prasser et al. (2007) measured in the Forschungszentrum Dresden-Rossendorf FZD facility. These experiments have been strategically chosen because of flow conditions yielding opposite trend of bubble size evolution, which provided the means of carrying out a thorough examination of existing bubble coalescence and break-up kernels. In general, predictions of both models were in good agreement with experimental data. The encouraging results demonstrated the capability of both models in capturing the dynamical changes of bubbles size due to bubble interactions and the transition from “wall peak” to “core peak” gas volume fraction profiles caused by the presence of small and large bubbles. Predictions of the inhomogeneous MUSIG model appeared marginally superior to those of ABND model. Nevertheless, through the comparison of axial gas volume fraction and Sauter mean bubble diameter profiles, ABND model may be considered an alternative approach for industrial applications of gas–liquid flow systems. 相似文献
14.
Numerical simulations of gas-liquid flow in a cylindrical bubble column of 400 mm in diameter at the superficial gas velocity were conducted to investigate effects of the configuration of gas distributors on hydrodynamic behaviour, gas hold-up and mixing characteristics. Eight different gas distributors were adopted in the simulation. The simulation results clearly show that the configuration of gas distributor have an important impact on liquid velocity and local gas hold-up in the vicinity of the gas distributor. Comparisons of the overall gas holdup and mixing time among different gas distributors have demonstrated that none of the adopted gas distributors was able to produce the highest interfacial area and also yield the shortest mixing time. The CFD modelling results reveal that an increase in the number of gas sparging pipes used in gas distributors is beneficial in improving the gas hold-up but is disadvantageous in reducing bubble size due to a decrease in turbulent kinetic dissipation. It has been demonstrated from the simulations that the appearance of asymmetrical flow patterns in the bubble column and the adoption of smaller gas sparging pipes for gas distributors are effective in improving the mixing characteristics. 相似文献
15.
C.A. Dorao 《Chemical engineering science》2007,62(5):1323-1333
Population Balance Equations (PBE) describe complex processes where the accurate prediction of the dispersed phase plays a major role for the overall behavior of the system. However, the solution of this type of equation is computationally intensive. In this paper, a least squares spectral method for solving the population balance in d=1,2,3 physical domains, p=1,… property domain and time is discussed. In the presented approach, the solution is found as the function that minimizes the residual function in the least squares sense. The capability of the method is shown by using some model problems related to the advective transport of the density function which describes the dispersed phase. 相似文献
16.
A mechanism has been elucidated for the coalescence-mediated break-up of bubbles in gas-liquid systems. Images taken from dynamic systems (a coalescence cell and laboratory-scale bubble columns) show that in some instances the coalescence of two bubbles is accompanied by the formation of a much smaller daughter bubble. Following the coalescence process an annular wave is formed due to the very rapid expansion of the hole following the instant of film rupture. As the wave moves along the length of the bubble, away from the point of rupture it causes a rippling effect which distorts the newly coalesced bubble and may result in the formation of an unstable extension. Instabilities due to the annular wave pinch off a portion of this extension, resulting in the generation of a small daughter bubble. In coalescence dominated systems the process results in the generation of significant numbers of bubbles much smaller (100- diameter) than the Sauter mean diameter (3-). 相似文献
17.
18.
19.
20.
A novel numerical method, the parallel parent and daughter classes (PPDC) technique, for solving population balance equations (PBEs) is presented in this paper. In many practical applications, the PBE of particles under investigation is coupled with the thermo-fluid dynamics of the surrounding fluid. Hence, the PBE needs to be implemented in a computational fluid dynamics (CFD) code, which leads to an additional computational load. The computational cost becomes intractable when techniques such as methods of classes (CM) or Monte Carlo method are used. Quadrature method of moments (QMOM) and direct quadrature method of moments (DQMOM) are accurate and require a relatively low additional computational cost when applied to CFD. The PPDC is shown to be as accurate as QMOM and DQMOM, and even more accurate in some cases, when the same number of classes is used. In the present work, the PPDC technique has been derived and tested. This technique can be used for solving a wide class of problems involving PBE such as polymerization, aerosol dynamics, bubble columns, etc. Numerical simulations have been carried out on aggregation processes with different kernels and on simultaneous aggregation and breakage processes. The numerical predictions are compared either with analytical solutions, when available, or with the numerical solutions obtained by methods of classes. 相似文献