首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Theoretical prediction of flow regime transition in bubble columns was studied based on the bubble size distribution by the population balance model (PBM). Models for bubble coalescence and breakup due to different mechanisms, including coalescence due to turbulent eddies, coalescence due to different bubble rise velocities, coalescence due to bubble wake entrainment, breakup due to eddy collision and breakup due to large bubble instability, were proposed. Simulation results showed that at relatively low superficial gas velocities, bubble coalescence and breakup were relatively weak and the bubble size was small and had a narrow distribution; with an increase in the superficial gas velocity, large bubbles began to form due to bubble coalescence, resulting in a much wider bubble size distribution. The regime transition was predicted to occur when the volume fraction of small bubbles sharply decreased. The predicted transition superficial gas velocity was about 4 cm/s for the air-water system, in accordance with the values obtained from experimental approaches.  相似文献   

2.
Computational fluid dynamics (CFD) simulations of bubble columns have received recently much attention and several multiphase models have been developed, tested, and validated through comparison with experimental data. In this work, we propose a model for two-phase flows at high phase fractions. The inter-phase forces (drag, lift and virtual mass) with different closure terms are used and coupled with a classes method (CM) for population balance. This in order to predict bubble’s size distribution in the column which results of break-up and coalescence of bubbles. Since these mechanisms result greatly of turbulence, a dispersed k turbulent model is used.The results are compared to experimental data available from the literature using a mean bubble diameter approach and CM approach and the appropriate formulations for inter-phase forces in order to predict the flow are highlighted.The above models are implemented using the open source package OpenFoam.  相似文献   

3.
In the present work, an attempt has been made to combine population balance and a CFD approach for simulating the flow in oscillatory baffled column (OBC). Three-dimensional Euler-Euler two-fluid simulations are carried out for the experimental data of Oliveira and Ni [2001. Gas hold-up and bubble diameter in a gassed oscillatory baffled column. Chemical Engineering Science 56, 6143-6148]. The experimental data include the average hold-up profile and bubble size distribution in the OBC. All the non-drag forces (turbulent dispersion force, lift force) and the drag force are incorporated in the model. The coalescence and breakage effects of the gas bubbles are modeled according to the coalescence by the random collision driven by turbulence and wake entrainment while for bubble breakage by the impact of turbulent eddies. Predicted liquid velocity and averaged gas hold-up are compared with the experimental data. The profile of the mean bubble diameter in the column and its variation with the superficial gas velocity is studied. Bubble size distribution obtained by the model is compared with the experimental data.  相似文献   

4.
In the present work, a computational model based on an Eulerian–Eulerian approach was used for the simulation of the transient two-phase flow in a rectangular partially aerated bubble column. Superficial gas velocities (UG) ranging from 0.24 to 2.30 cm/s were used throughout both the experiments and the simulations. The calculated results were verified by comparing them with experimental data including measurements of gas hold-up, plume oscillation period (POP) and Sauter mean bubble diameter. The study shows the effect of mesh refinement, time-step and physical model selection, the latter regarding the role of bubble size distribution and non-drag forces, on the computational results. According to the results presented here, the representation of bubble populations using multiple size groups (MUSIG model) instead of a single group improves the prediction of the experimental parameters under study. Additionally, the results obtained after including the virtual mass force term do not differ considerably from those obtained including only the drag force. On the contrary, as a consequence of introducing the lift force term into the model, the gas hold-up is overestimated and a non-symmetric bubble plume oscillation appears, a fact that is not experimentally observed.  相似文献   

5.
A novel model is presented which uses mass and momentum equations based on population balances to describe the dispersed phase of bubble columns. A set of integro-differential non-linear equations constitutes the model, which can be solved directly using the least-squares methods. The implementation for these is presented.The model presents a degree of flexibility, as different density functions (number, mass and volume) and different internal coordinates (bubble diameter, volume and mass) can be used.A simplified 1D model of a bubble column is solved using the least-squares spectral element method. The results obtained for two different gas volume fluxes at the inlet are compared with experiments by several authors. The simulations show good agreement with the measured data.  相似文献   

6.
This paper presents new population balance analysis to describe simultaneous coalescence and break-up in the formation of methylmethacrylate droplets in a batch oscillatory baffled reactor. It is concluded that the droplet data can very well be described by a model in which coalescence is taken to be shear induced, selection for break-up proceeds at a rate proportional to droplet volume and approximately four equally sized break-up fragments are produced per break-up event. It is shown that the experimental droplet size distribution data are self-similar in form and exhibit asymptotic behaviour characteristics also seen in the model. The coalescence rate is found to vary as the square of the oscillation frequency and the selection rate to vary with the oscillation frequency to the power five. As a result the asymptotic mean droplet volume is inversely proportional to the oscillation frequency.  相似文献   

7.
Gas–liquid bubbly flows with wide range of bubble sizes are commonly encountered in many industrial gas–liquid flow systems. To assess the performances of two population balance approaches – Average Bubble Number Density (ABND) and Inhomogeneous MUlti-SIze-Group (MUSIG) models – in tracking the changes of gas volume fraction and bubble size distribution under complex flow conditions, numerical studies have been performed to validate predictions from both models against experimental data of Lucas et al. (2005) and Prasser et al. (2007) measured in the Forschungszentrum Dresden-Rossendorf FZD facility. These experiments have been strategically chosen because of flow conditions yielding opposite trend of bubble size evolution, which provided the means of carrying out a thorough examination of existing bubble coalescence and break-up kernels. In general, predictions of both models were in good agreement with experimental data. The encouraging results demonstrated the capability of both models in capturing the dynamical changes of bubbles size due to bubble interactions and the transition from “wall peak” to “core peak” gas volume fraction profiles caused by the presence of small and large bubbles. Predictions of the inhomogeneous MUSIG model appeared marginally superior to those of ABND model. Nevertheless, through the comparison of axial gas volume fraction and Sauter mean bubble diameter profiles, ABND model may be considered an alternative approach for industrial applications of gas–liquid flow systems.  相似文献   

8.
Numerical simulations of gas-liquid flow in a cylindrical bubble column of 400 mm in diameter at the superficial gas velocity were conducted to investigate effects of the configuration of gas distributors on hydrodynamic behaviour, gas hold-up and mixing characteristics. Eight different gas distributors were adopted in the simulation. The simulation results clearly show that the configuration of gas distributor have an important impact on liquid velocity and local gas hold-up in the vicinity of the gas distributor. Comparisons of the overall gas holdup and mixing time among different gas distributors have demonstrated that none of the adopted gas distributors was able to produce the highest interfacial area and also yield the shortest mixing time. The CFD modelling results reveal that an increase in the number of gas sparging pipes used in gas distributors is beneficial in improving the gas hold-up but is disadvantageous in reducing bubble size due to a decrease in turbulent kinetic dissipation. It has been demonstrated from the simulations that the appearance of asymmetrical flow patterns in the bubble column and the adoption of smaller gas sparging pipes for gas distributors are effective in improving the mixing characteristics.  相似文献   

9.
A mechanism has been elucidated for the coalescence-mediated break-up of bubbles in gas-liquid systems. Images taken from dynamic systems (a coalescence cell and laboratory-scale bubble columns) show that in some instances the coalescence of two bubbles is accompanied by the formation of a much smaller daughter bubble. Following the coalescence process an annular wave is formed due to the very rapid expansion of the hole following the instant of film rupture. As the wave moves along the length of the bubble, away from the point of rupture it causes a rippling effect which distorts the newly coalesced bubble and may result in the formation of an unstable extension. Instabilities due to the annular wave pinch off a portion of this extension, resulting in the generation of a small daughter bubble. In coalescence dominated systems the process results in the generation of significant numbers of bubbles much smaller (100- diameter) than the Sauter mean diameter (3-).  相似文献   

10.
The Eulerian–Lagrangian simulation of bubbly flow has the advantage of tracking the motion of bubbles in continuous fluid, and hence the position and velocity of each bubble could be accurately acquired. Previous simulation usually used the hard-sphere model for bubble–bubble interactions, assuming that bubbles are rigid spheres and the collisions between bubbles are instantaneous. The bubble contact time during collision processes is not directly taken into account in the collision model. However, the contact time is physically a prerequisite for bubbles to coalesce, and should be long enough for liquid film drainage. In this work we applied the spring-dashpot model to model the bubble collisions and the bubble contact time, and then integrated the spring-dashpot model with the film drainage model for coalescence and a bubble breakage model. The bubble contact time is therefore accurately recorded during the collisions. We investigated the performance of the spring-dashpot model and the effect of the normal stiffness coefficient on bubble coalescence in the simulation.The results indicate that the spring-dashpot model together with the bubble coalescence and breakage model could reasonably reproduce the two-phase flow field, bubble coalescence and bubble size distribution. The influence of normal stiffness coefficient on simulation is also discussed.  相似文献   

11.
Population Balance Equations (PBE) describe complex processes where the accurate prediction of the dispersed phase plays a major role for the overall behavior of the system. However, the solution of this type of equation is computationally intensive. In this paper, a least squares spectral method for solving the population balance in d=1,2,3 physical domains, p=1,… property domain and time is discussed. In the presented approach, the solution is found as the function that minimizes the residual function in the least squares sense. The capability of the method is shown by using some model problems related to the advective transport of the density function which describes the dispersed phase.  相似文献   

12.
A novel numerical method, the parallel parent and daughter classes (PPDC) technique, for solving population balance equations (PBEs) is presented in this paper. In many practical applications, the PBE of particles under investigation is coupled with the thermo-fluid dynamics of the surrounding fluid. Hence, the PBE needs to be implemented in a computational fluid dynamics (CFD) code, which leads to an additional computational load. The computational cost becomes intractable when techniques such as methods of classes (CM) or Monte Carlo method are used. Quadrature method of moments (QMOM) and direct quadrature method of moments (DQMOM) are accurate and require a relatively low additional computational cost when applied to CFD. The PPDC is shown to be as accurate as QMOM and DQMOM, and even more accurate in some cases, when the same number of classes is used. In the present work, the PPDC technique has been derived and tested. This technique can be used for solving a wide class of problems involving PBE such as polymerization, aerosol dynamics, bubble columns, etc. Numerical simulations have been carried out on aggregation processes with different kernels and on simultaneous aggregation and breakage processes. The numerical predictions are compared either with analytical solutions, when available, or with the numerical solutions obtained by methods of classes.  相似文献   

13.
Computational fluid dynamics (CFD) simulations have been carried out to simulate a turbulent, bubble plume in a liquid pool. A two-fluid enhanced k-? model has been used, with the extra source terms introduced to account for the interaction between the bubbles and the liquid and transient calculations have been performed to study the plume growth, the acceleration of the liquid due to viscous drag, and the approach to steady-state conditions. In order to obtain correct spreading of the plume observed experimentally, it was observed that interfacial forces like lift and turbulent dispersion plays important role. The sensitivity analysis for drag coefficient and two different turbulent dispersion forces is presented. The development of the flow variables has been compared with the experimental data. From the CFD predictions obtained in the present work, it can be concluded that a two-dimensional (2D) axisymmetric assumption in this case is justified, with 2D model predictions in good agreement with the experimental data and those of a three-dimensional (3D) model, except for the shear stresses and turbulent kinetic energy. In general, quantitative comparison with the experimental data has revealed that, by applying proper models of inter-phase momentum transfer, and performing simulations based on the two-fluid model, satisfactory predictions of mean flow quantities can be obtained for this application away from the injector.  相似文献   

14.
The study of bubble size distributions in direct-contact evaporators was addressed both theoretically and experimentally. Recently developed models for calculating bubble coalescence and breakage frequencies in isothermal bubble columns were adapted to the population balance equation using the bubble mass as the internal coordinate which was discretized using an expansion of the number density function by impulse functions. A sparger model was developed based on experimental data for a non-coalescing system and using bubble formation models for isothermal and non-isothermal conditions. Bubble size distributions in a direct-contact evaporator operating in the quasi-steady-state regime for four different gas superficial velocities, including the homogeneous and heterogeneous regimes, together with the sparger model, were used for estimating the three empirical parameters from the population balance model, which were observed to be functions of the gas superficial velocity. In all cases considered, the population balance model fitted the experimental data rather well and the regressed parameters exhibit the physically expected behavior with changes in the gas superficial velocity.  相似文献   

15.
Gas-liquid mass transfer in a bubble column in both the homogeneous and heterogeneous flow regimes was studied by numerical simulations with a CFD-PBM (computation fluid dynamics-population balance model) coupled model and a gas-liquid mass transfer model. In the CFD-PBM coupled model, the gas-liquid interfacial area a is calculated from the gas holdup and bubble size distribution. In this work, multiple mechanisms for bubble coalescence, including coalescence due to turbulent eddies, different bubble rise velocities and bubble wake entrainment, and for bubble breakup due to eddy collision and instability of large bubbles were considered. Previous studies show that these considerations are crucial for proper predictions of both the homogenous and the heterogeneous flow regimes. Many parameters may affect the mass transfer coefficient, including the bubble size distribution, bubble slip velocity, turbulent energy dissipation rate and bubble coalescence and breakup. These complex factors were quantitatively counted in the CFD-PBM coupled model. For the mass transfer coefficient kl, two typical models were compared, namely the eddy cell model in which kl depends on the turbulent energy dissipation rate, and the slip penetration model in which kl depends on the bubble size and bubble slip velocity. Reasonable predictions of kla were obtained with both models in a wide range of superficial gas velocity, with only a slight modification of the model constants. The simulation results show that CFD-PBM coupled model is an efficient method for predicting the hydrodynamics, bubble size distribution, interfacial area and gas-liquid mass transfer rate in a bubble column.  相似文献   

16.
Two-dimensional axisymmetric Eulerian/Eulerian simulations of two-phase (gas/liquid) transient flow were performed using a multiphase flow algorithm based on the finite-volume method. These numerical simulations cover laboratory scale bubble columns of different diameters, operated over a range of superficial gas velocities ranging from the bubbly to the churn turbulent regime. The bubble population balance equation (BPBE) is implemented in the two-fluid model that accounts for the drag force and employs the modified k-ε turbulence model in the liquid phase. Several available bubble breakup and coalescence closures are tested. Quantitative agreements between the experimental data and simulations are obtained for the time-averaged axial liquid velocity profiles, as well as for the kinetic energy profiles, only when model predicted breakup rate is increased by a factor of ten to match the coalescence rate. The calculated time-averaged gas holdup profiles deviate in shape from the measured ones and suggest that full three-dimensional simulation is needed. Implementation of BPBE leads to better agreement with data, especially in the churn-turbulent flow regime, compared to the simulation based on an estimated constant mean bubble diameter. Differences in the predicted interfacial area density, with and without BPBE implementation, are significant. The choice of bubble breakup and coalescence closure does not have a significant impact on the simulated results as long as the magnitude of breakup is increased tenfold.  相似文献   

17.
18.
A comprehensive model for predicting the interacting hydrodynamics and mass transfer is formulated on the basis of a spatially distributed population balance equation in terms of the bivariate number density function with respect to droplet diameter and solute concentration. The two macro- (droplet breakage and coalescence) and micro- (interphase mass transfer) droplet phenomena are allowed to interact through the dispersion interfacial tension. The resulting model equations are composed of a system of partial and algebraic equations that are dominated by convection, and hence it calls for a specialized discretization approach. The model equations are applied to a laboratory segment of an RDC column using an experimentally validated droplet transport and interaction functions. Aside from the model spatial discretization, two methods for the discretization of the droplet diameter are extended to include the droplet solute concentration. These methods are the generalized fixed-pivot technique (GFP) and the quadrature method of moments (QMOM). The numerical results obtained from the two extended methods are almost identical, and the CPU time of both methods is found acceptable so that the two methods are being extended to simulate a full-scale liquid-liquid extraction column.  相似文献   

19.
Single droplet experiments in a small lab scale Rotating Disk Contactor (RDC) for two different liquid–liquid systems were used to evaluate the coalescence parameters necessary for column simulations. Five different coalescence models are studied; the models parameters were obtained by an inverse solution of the population balance model using the extended fixed-pivot technique for the discretization of the droplet internal coordinate. The estimated coalescence parameters by solving the inverse problem were found dependent on the chemical test system. The Coulaloglou and Tavlarides model was found to be the best model to predict the experimental data for both test systems. These parameters were used to study the hydrodynamics and mass transfer behavior of pilot plant RDC extraction column using the simulation tool LLECMOD. This is performed for two different liquid–liquid systems as recommended by the European Federation of Chemical Engineering (EFCE) (butylacetate–acetone–water (b–a–w) and toluene–acetone–water (t–a–w)). The simulated Sauter mean droplet diameter, hold-up values and concentration profiles for organic and aqueous phase were found to be well predicted compared to the experimental data.  相似文献   

20.
The distribution of gas holdup, the rise velocity of gas bubble swarm and the Sauter mean bubble size are estimated with a small diameter laboratory scale bubble column using electrical resistance tomography (ERT). The theory of gas disengagement based on ERT methods has been developed for estimations of bubble size and bubble rise velocity. The gas holdups of large bubble swarm and small bubble swarm, the distribution of both bubble size are derived through the analysis of gas disengagement based on the differences of the rise velocity of bubble swarm at the cross-section imaged by electrical resistance tomography. Experimental results are in very good agreement with correlations and conventional estimation obtained using pressure transmitter methods. The proposed methodology can be also used as an analysis tool for quantifying and optimizing the performance of other types of complex reaction systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号