首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
AZ31镁合金铸轧和常规轧制板的变形组织及形变特征   总被引:1,自引:1,他引:0  
在变形温度为150~400 ℃、应变速率为0.3~0.000 3 s~(-1)条件下,在Gleeble1500热模拟机上采用等温拉伸试验对AZ31镁合金铸轧和常规轧制板的高温塑性及组织演变进行研究.结果表明:两种AZ31镁合金板的峰值应力和峰值应变均随着变形温度的降低和应变速率的增加而逐渐增大.铸轧板的应变硬化指数和应变速率敏感系数均大于常规轧制板的.在高温低应变速率变形条件下,铸轧板的晶界滑移引起的空洞尺寸、体积分数和密度均大于常规轧制板的.低应变速率下拉伸变形后的动态再结晶晶粒尺寸随温度的升高逐渐增加;不同变形条件下铸轧板的晶粒尺寸均小于常规轧制板的;再结晶晶粒尺寸和Z参数呈幂律关系.  相似文献   

2.
采用Gleebe-1500D热模拟试验机对AZ31镁合金铸轧板和常规轧制板进行了等温拉伸试验,变形温度为150~400℃,应变速率为3×10^-4~3×10^-1s^-1。研究了AZ31镁合金铸轧板和常规轧制板在不同变形条件下的组织演变。结果表明,两种板低温变形后的组织主要包括被拉长和破碎的晶粒以及孪晶。随着变形温度的升高,AZ31镁合金开始发生动态再结晶。铸轧板高温低应变速率变形条件下晶界滑移引起的空洞尺寸、体积分数和密度均大于常规轧制板。再结晶晶粒尺寸和参数Z呈幂律关系。  相似文献   

3.
铸态AZ31B镁合金热压缩实验研究   总被引:2,自引:1,他引:1  
研究了铸态AZ31B镁合金在温度280~440℃和应变速率10-3~10-1s-1范围内的变形规律.结果表明:铸态AZ31B镁合金在高温下表现出较低的流变应力.其真应力-真应变曲线表现出明显的动态再结晶特征.再结晶晶粒明显细化,晶粒尺寸随着温度或Z(Zener-Hollomon常数)值的下降而增大.在低应变速率下可以得到相对均匀的变形组织.  相似文献   

4.
用Geeble1500热模拟实验机模拟不同始轧温度、冷却强度以及变形量和应变速率下AZ31合金的铸轧行为.结果显示:AZ31镁合金铸轧组织对应变速率和变形量均具有较强的敏感性.当ε由0.005s-1增到0.1s-1时,铸轧组织的晶粒逐渐变小,同时晶界析出物减少.变形量ε由20%增加到50%时,晶粒组织细化明显.试验得出了AZ31镁合金连续铸轧工艺的边界工艺条件,在此条件下,获得铸轧板的力学性能如下:70 HV0.5,σb为210-240 MPa,σ0.2为180-200MPa,δ为3%-6%.  相似文献   

5.
采用热模拟实验方法获得了AZ31镁合金热变形真实应力-真实应变曲线,分析了变形工艺参数对AZ31镁合金热变形动态再结晶晶粒尺寸的影响规律。随着塑性变形应变速率的增大,动态再结晶晶粒尺寸减小。随着塑性变形温度的升高,晶粒尺寸增大。基于Yada模型,建立了AZ31镁合金热变形动态再结晶晶粒尺寸与变形工艺参数关系模型,以及动态再结晶临界应变与变形温度关系模型。晶粒尺寸预测模型计算值与实验值相吻合,最大相对误差为8.5%。临界应变模型计算值与实验值相吻合,最大相对误差为8.1%。建立的动态再结晶晶粒尺寸预测模型和临界应变预测模型的适用条件为变形温度250~400℃,应变速率0.01~1.0 s-1。  相似文献   

6.
以铸态AZ31B镁合金材料为基础,采用Gleeble-1500D热变形模拟试验机对铸态AZ31镁合金在250、300、350、400℃,应变速率0.005、0.05、0.5 s-1条件下的再结晶行为进行研究,建立了热变形方程,再结晶运动学模型、晶粒尺寸模型。结果表明:在较高温度或较低应变速率下可得到较为细小的晶粒,从而对减小晶界处的孪晶位错密度,为后期轧制铸轧镁板生产过程中降低边裂产生的概率提供依据。  相似文献   

7.
在轧制温度603~703 K、轧制压下量20%~40%、应变速率4~16 s-1下对AZ31镁合金进行轧制变形,研究轧制压下量、应变速率和变形温度对AZ31镁合金变形组织的影响,分析了镁合金的动态再结晶机制。结果表明:应变速率和变形温度不仅影响动态再结晶进行的程度,而且能够改变再结晶的方式或形核机制。当轧制应变速率= 13.9 s-1,变形温度T=603 K时,再结晶方式为孪生动态再结晶;变形温度升高到703 K时,沿晶界有链状新晶粒出现。当变形温度T= 673 K,应变速率= 11.35 s-1时,再结晶方式以孪生动态再结晶为主;应变速率降低到= 4 s-1时,再结晶方式以旋转动态再结晶为主。  相似文献   

8.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

9.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

10.
AZ31B镁合金铸轧板温热拉伸流变行为研究   总被引:2,自引:2,他引:0  
由于短流程、低能耗的铸轧镁合金板材生产技术的突破,镁合金铸轧产品深加工必将成为镁合金材料应用的一个新的重要趋势。为研究AZ31铸轧镁合金板材的成形性能,通过温热力学拉伸试验得到了在应变速率为0.001~1.000s-1,变形温度为473~623K条件下的力学性能。研究发现,铸轧镁合金在变形温度为573~623K高温区,低应变速率时流变应力呈幂指数关系;而在变形温度低于573K,高应变速率时流变应力呈指数关系。微观组织分析发现,变形过程中发生动态再结晶,且晶粒尺寸随变形温度的升高而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号