首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
用固态杂质源在GaAs衬底上实现的连续波CO_2激光诱导Zn扩散   总被引:15,自引:4,他引:11  
用含Zn的固态杂质源,在化合物半导体GaAs基片上进行了连续波(CW)10.6μm激光诱导扩散,做出了P-N结。分别利用扫描电子显微镜和二次离子质谱仪对扩散样品进行扩散区形貌分析和杂质分布研究,给出了结深xj、杂质浓度分布C(x,t,T)等性能参数和扩散时间t、温度T等工艺参数之间的关系,获得了亚微米的扩散结结深及1020cm-3量级的表面掺杂浓度  相似文献   

2.
通过SIMS对激光诱导扩散杂质浓度分布的研究,提出了一个测量扩散区只在μm量级或10μm量级范围内的杂质浓度分布的方法.首先利用光刻的方法在基片表面标识出扩散窗口,然后进行激光诱导处理.用SIMS对制成的扩散样品定量分析,通过扫描探针显微镜测量刻蚀深度,由此实现了微小扩散区掺杂浓度-深度分布的研究.  相似文献   

3.
方小华  鲍希茂 《半导体学报》1996,17(12):919-922
本文报道采用选择性掺杂的多晶硅热退火掩膜作扩散源进行的GaAs中Si扩散机制的研究结果.发现共P扩散时,样品表层的电学性能明显提高.Si杂质的内扩散小;共Al扩散时,Si杂质内扩散很深.用GaAs中化学配比平衡观点讨论了扩散层中杂质分布与电学性能关系,认为Si杂质在GaAs中的热扩散主要由As空位浓度决定.  相似文献   

4.
Yb∶YAG表层增益陶瓷板条在烧结过程中存在离子扩散行为,导致扩散区域折射率变化,引起波前畸变。本文结合扩散理论,建立表层增益陶瓷板条离子浓度分布、折射率空间分布模型,利用数值模拟的方法分析了扩散行为对静态波前畸变的影响。与传统晶体板条相比,陶瓷板条的离子扩散行为,对于静态波前畸变有一定影响,畸变在λ/10量级。  相似文献   

5.
对InGaAs/InGaAsP多量子阱材料,根据温度场方程计算了两种激光作用下多量子阱混迭技术(PAID及PLD)的横向空间选择性,得到PAID在一般情况下的横向空间选择性为100μm量级,而PLD的理论极限为100μm。同时分析了混迭多量子阱材料的能带结构与组分扩散长度的关系,从理论上提出了低温量子阱材料与扩散长度之间的关系曲线。  相似文献   

6.
本文应用二次离子质谱(SIMS),微分霍尔效应和透射电镜(TEM)研究了硅中高温注入砷离子的扩散和激活行为.将180KeV,1×1015cm-2砷离子在500℃至1000℃的温度范围内注入硅.研究结果表明:在500℃至850℃注入时所发生的异常扩散和载流子浓度及迁移率深度分布与剩余缺陷的分布密切相关;而且随着注入温度的增高,砷的增强扩散亦增强,同时所形成的剩余缺陷减少.在注入温度高于850℃时,随着注入温度的增高,砷的增强扩散效应减弱.在500℃至1000℃的注入温度,与热扩散相比,砷的增强扩散效应显著;  相似文献   

7.
陈朝  王健华 《半导体学报》1996,17(3):191-195
用液结光伏谱方法首次在PN4350光伏谱仪上对用国产MOCVD设备生长的九个p-GaAs/n-GaAs外延样品p型外延层的少于扩散长度Ln和掺杂浓度NA的关系作了测量和分析.结果表明,Ln-NA关系对反应管的清洁度非常敏感.如果反应管经严格清洗,并仅生长GaAs材料,那么Ln-NA关系同前人报道的无沾污生长的样品基本一致;否则Ln值就明显偏小.用本方法测定GaAs外延层的Ln值具有简便、准确的优点,可作为检测GaAs外延层质量的重要手段.  相似文献   

8.
胡浩  陈星弼 《半导体学报》2010,31(5):052004-4
在现代半导体工艺中有多次不同温度的扩散过程。文章分析了经历这些扩散过程后的杂质分布并且给出了一个简单的表达式。文章指出多次扩散后的杂质分布可以用一个有效扩散长度来表征并且给出了有效扩散长度和各次扩散过程的扩散长度的关系。表达式的结果同工艺仿真软件SUPREM 4符合的很好。文章还给出了如何应用表达式的例子。  相似文献   

9.
大多数生物组织是一种混浊介质,在0.6~1.3μm的红光与近红外光波段具有高的前向散射和低吸收的特点。超短脉冲光在组织中传输时,将因漫散射合脉冲展宽。脉冲形状与散射吸收特性有关。本文提出一种基于扩散近似理论的扩散似合方法,用于提取不同位置的散射特性。  相似文献   

10.
利用闭管扩散方法以Zn3P2为扩散源,在不同扩散温度和扩散时间下对非故意掺杂InP(100)晶片进行扩散.用电化学C-V法(ECV)和二次离子质谱法(SIMS)分别测出了空穴浓度和Zn的浓度随深度的分布曲线.结果表明扩散后InP表面空穴和Zn的浓度在扩散结附近突然下降,InP表面空穴浓度主要取决于扩散温度,扩散深度随着扩散时间的增长而变大,InP表面Zn浓度一般比空穴浓度高一个数量级.另外对扩散后的样品进行光致发光(PL)测试,表明在保证表面载流子浓度的同时,适当降低扩散温度和增加扩散时间能减小对InP表面性质的影响.  相似文献   

11.
曹嘉晟  李淘  王红真  于春蕾  杨波  马英杰  邵秀梅  李雪  龚海梅 《红外与激光工程》2021,50(11):20210073-1-20210073-8
为了获得低噪声铟镓砷(InGaAs)焦平面,需要采用高质量的非故意掺杂InGaAs(u-InGaAs)吸收层进行探测器的制备。采用闭管扩散方式,实现了Zn元素在u-InGaAs吸收层晶格匹配InP/In0.53Ga0.47As异质结构材料中的P型掺杂,利用扫描电容显微技术(SCM)对Zn在材料中的扩散过程进行了研究,结果表明,随着扩散温度和时间增加,p-n结结深显著增加,u-InGaAs吸收层材料的扩散界面相比较高吸收层浓度材料(5×1016 cm?3)趋于缓变。根据实验结果计算了530 ℃下Zn在InP中的扩散系数为1.27×10?12 cm2/s。采用微波光电导衰退法(μ-PCD)提取了InGaAs吸收层的少子寿命为5.2 μs。采用激光诱导电流技术(LBIC)研究了室温下u-InGaAs吸收层器件的光响应分布,结果表明:有效光敏面积显著增大,对实验数据的拟合求出了少子扩散长度LD为63 μm,与理论计算基本一致。采用u-InGaAs吸收层研制的器件在室温(296 K)下暗电流密度为7.9 nA/cm2,变温测试得到激活能Ea为0.66 eV,通过拟合器件的暗电流成分,得到器件的吸收层少子寿命τp约为5.11 μs,与微波光电导衰退法测得的少子寿命基本一致。  相似文献   

12.
Using multiple layer liquid phase epitaxial (LPE) growth techniques, p(AlxGa1-xAs:Ge)-p(GaAs:Ge)-n+(GaAs:Te) solar cells were fabricated. Germanium was used as the p-type dopant to eliminate impurity diffusion and to maximize minority carrier diffusion lengths. These procedures provide precise control of the thickness and carrier concentration of each individual layer.  相似文献   

13.
A new method for the determination of minority carrier lifetime and diffusion length in thin silicon epitaxial layers was developed. Using a transparent MIS structure the surface recombination velocity was reduced below 25 cm/s. This method makes possible to determine minority carrier lifetime and also diffusion length much greater than the thickness of the epitaxial layer.  相似文献   

14.
Minority carrier diffusion lengths are measured in lightly n-doped GaAs epitaxial layers. Three different measuring methods are applied. They use photoluminescence, surface photovoltage, and pulsed MIS-capacitors. For photoluminescence measurements the influence of a surface depletion layer is considered. The measured values of the diffusion length do not reveal any dependence on the majority carrier concentration, but they depend on the applied measuring method.  相似文献   

15.
A new method of extracting minority carrier diffusion length from within a confined region of material is presented in this paper. This technique uses the finite difference method and can be used on samples where the diffusion lengths are longer than the width of the region. This cannot be achieved using the conventional method, which evaluates the negative reciprocal of the slope of the EBIC signals line scan plotted on a semi-logarithmic scale. A limitation of this method is that the beam entrance surface of the sample is assumed to have negligible surface recombination  相似文献   

16.
The open-circuit voltage of about 600 mV developed by 0.1 ohm-cm silicon solar cells under air mass zero illumination is about 100 mV less than voltages predicted from simple diffusion theory. The lower measured voltages appear to be controlled by junction current transport processes associated with the thin top diffused layer. Mechanisms such as low n+ layer minority carrier lifetime and bandgap narrowing due to heavy doping effects (HDE) have been suggested to explain these results. Experimental determinations of the properties of the diffused layer are required to assess which of these mechanisms predominate. While direct measurement is difficult, an indirect measurement methodology exists by which the lifetime or transit time in the diffused layer can be obtained. Nine p-type, 1×2 cm, 〈111〉 orientation silicon wafers were phosphorus diffused at 880°C for 45 minutes using P0Cl3. Open-circuit voltages of 595-612 mV, typical of all 0.1 ohm-cm cell voltages, were obtained. From the open-circuit voltage and short-circuit current, the diffusion controlled I0 was obtained. In addition to illuminated I-V characteristics, the time constants from the Open-Circuit Voltage Decay method, and the minority carrier diffusion lengths in the base region were measured. The base region charge was determined using the base region diffusion length measured by an X-ray method. The data from these experiments combined with simple theory can imply the minority carrier time constant and the excess charge in the diffused layer. From this, certain conclusions are drawn about the relative roles of bandgap shrinkage and recombination rates in the diffused layer.  相似文献   

17.
The conventional method of extracting the minority carrier diffusion length using the electron beam-induced current (EBIC) technique requires that the electron beam be placed at region more than two diffusion lengths away from the collector. The EBIC signals obtained under this condition usually has low signal to noise ratio. In addition, the true diffusion length of the sample is initially unknown and hence it is difficult to estimate how close the beam can be placed from the collector. To overcome all these difficulties, a new method of extracting minority carrier diffusion length from the EBIC signal is proposed. It is shown that this method can be applied to EBIC signals obtained from regions close to the collector. It is also shown that the surface recombination velocity of the sample can also be obtained using this method. This theory is verified using EBIC data generated from a device simulation software.  相似文献   

18.
This note draws attention to possible errors when characterizing silicon solar cells by means of the effective minority carrier diffusion length Lb as defined in the paper on “Numerical modeling of textured silicon solar cells using PC1D” by Basore (1990). The approximations underlying the analytical expression for L eff are critically reviewed. Their impact on the determination of the minority carrier bulk diffusion length Lb from Leff is discussed for a 250-μm thick Si solar cell. It is found that considerable errors occur in the case of diffusion lengths larger than the cell thickness even when neglecting any measurement uncertainty  相似文献   

19.
A single-step diffusion followed by precise etching of the diffused layer has been developed to obtain a diffusion profile appropriate for high-efficiency GaSb thermophotovoltaic (TPV) cells. The junction depth was controlled through monitoring of light current-voltage (I–V) curves (photovoltaic response) during the post-diffusion emitter-etching process. The measured photoresponses (prior to device fabrication) have been correlated with the quantum efficiencies (QEs) and the open-circuit voltages in the fabricated devices. An optimum junction depth for obtaining the highest QE and open-circuit voltage is presented based on diffusion lengths (or minority carrier lifetimes), carrier mobility, and the typical diffused impurity profile in GaSb.  相似文献   

20.
Minority carrier diffusion lengths were determined for InGaAsP and InGaAs layers grown by liquid phase epitaxy on (100)-InP substrates by measuring the variation of the short circuit photocurrent as a focussed laser beam was scanned along a beveled (~1°) p-n junction. The effect of lattice-mismatch on the hole diffusion length (λp) for n-type unintentionally doped InGaAsP layers (λg=1.15 μm) was investigated for mismatch values from -0.25% to +0.31%, with the longest diffusion length (Lp = 1.5 μm) occurring when the epitaxial layer was lattice-matched to the substrate. As the amount of mismatch increased, Lp decreased. Electron diffusion lengths, Ln, were determined for lattice-matched quaternary and ternary layers grown from Zn doped melts over a wide range of hole concentrations. At the lowest hole concentrations, p = 3 × l015 and 1.4 × 1016 cm−3, the electron diffusion lengths were 3.5 and 2.5 μm for the quaternary and ternary, respectively. As the hole concentration increased, Ln decreased and at the highest concentration (p = 5 × 10su18,cn−3) Ln was 0.13 μm for InGaAsP and 0.83 un for InGaAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号