首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Positional‐species composition (PSC) of 1,2,3‐triacyl‐sn‐glycerols (TAG) from the arils of mature fruits of 13 species of Euonymus L. genus was established. The residues of six major fatty acids (FA), palmitic, stearic, hexadecenoic (H), octadecenoic (O), linoleic (L), and linolenic, were present in the TAG. PSC of TAG was determined by their partial lipase hydrolysis. By using hierarchical cluster and principal component analyses, it was definitely demonstrated that separate taxonomic units forming this genus were significantly distinguished as regards PSC of TAG. In particular, the Euonymus subgenus greatly exceeded the Kalonymus subgenus in both total content of L in TAG and in the rate of its incorporation into their mid‐position, while TAG of Kalonymus were marked by a prevalence of O‐TAG and sn‐2‐O isomers. Thus, these subgenera were significantly distinct in the rate of incorporation of O and L residues in the sn‐2 position of TAG molecules. Meanwhile, the TAG from the Euonymus section species were marked by an enhanced concentration of H and the incorporation of H in UUU TAG was much more active than in other TAG types. As for positional‐type composition of TAG, saturated FA were always virtually absent in the sn‐2 position of Euonymus aril TAG.  相似文献   

2.
Asymmetric, optically active sn‐1,2‐diacyl‐3‐acetyl‐glycerols (AcDAG) have been known to scientists for several decades. However, to date, the problem of their structure has not been definitely resolved, which has led to a vast diversity of terms used for their designation in the literature. Using two‐dimensional nuclear magnetic resonance, we have investigated AcDAG from the mature seeds of Euonymus maximowiczianus, from which we have been able to both identify a correlation of the methyl group in acetic acid residue with protons at the carbon atom at sn‐3 position in the glycerol residue of the AcDAG molecule and, for the first time, demonstrate that this correlation is observed exclusively with one carbon atom at the α‐position, but not with two as would have been expected in case of a racemic mixture. Moreover, results of our analysis of AcDAG isolated from the seeds of E. maximowiczianus directly confirm that diacylglycerol‐3‐acetyl‐transferase is responsible for their biosynthesis, which reveals a strict specificity not only to acetyl‐CoA as one of the substrates but also to the sn‐3‐position of the glycerol residue in sn‐1,2‐diacylglycerol during their biosynthesis.  相似文献   

3.
For application of n-3 fatty acids, distribution of the fatty acid compositions of different parts of (head, tail, fins and skin = HTFS, liver, viscera and muscle tissue) five commercially important fish species from the Persian Gulf (Scomberomorus commersoni, Thunnus tonggol, Euthynnus affinis, Scomberomorus guttatus and Dussumieria acuta) as good sources of n-3 PUFA were studied. The richest source of n-3 were HTFS in S. guttatus and S. commersoni, liver in S. guttatus, total body of D. acuta, liver of E. affinis and T. tonggol, followed by viscera of E. affinis. The content of these fatty acids were the same in viscera of tonggol, liver of S. commersoni, and HTFS of E. affinis. Moreover, muscle of E. affinis and HTFS of T. tonggol and also muscle of S. guttatus and T. tonggol had the same n-3 contents as the viscera of S. commersoni. So, it was concluded that HTFS and viscera (which are discarded as residues) are as useful as muscle and liver and can be a source of economically available n-3 PUFA. Muscle had the lowest proportion of n-3 in E. affinis, T. tonggol, and S. guttatus in comparison with other organs of these fish species. The highest n-3:n-6 ratio was observed in D. acuta. Finally, the cluster analysis showed that with respect to n-3 and other PUFA contents, HTFS of S. commersoni and D. acuta with S. guttatus on the one hand, and HTFS of T. tonggol and E. affinis on the other hand were similar to each other. In addition, viscera of S. commersoni and S. guttatus were similar followed by T. tonggol and different from E. affinis and D. acuta. In the case of muscle, T. tonggol and S. guttatus had good similarity followed by E. affinis and had no significant similarity with S. commersoni and D. acuta. With regard to liver, the highest similarity was observed between T. tonggol and E. affinis followed by D. acuta and S. guttatus, while S. commersoni did not show similarity with the others.  相似文献   

4.
Globoid cell leukodystrophy or Krabbe disease is an inherited autosomal recessive disorder caused by mutations in the galactosylceramidase gene. The objective of the study was to present information about the fatty acid (FA) composition of the brain and serum of twitcher mice, a mouse model of Krabbe disease, compared to wild type, in order to identify biomarker of disease progression. We defined the FA profiles by identifying the main components present in serum and brain using GC‐EI‐MS analysis. The FA percentage composition was measured and data were analyzed considering the disease and the mouse age as experimental factors. Significant correlations were established, both in brain and in serum, in the fatty acid percentage composition of twitcher compared to wild type mice. The most abundant saturated fatty acid in brain was the palmitic acid (C16:0) with mean values significantly increased in twitcher mouse (p = 0.0142); moreover, three monounsaturated, three polyunsaturated (PUFA) and a plasmalogen were significantly correlated to disease. In the serum highly significant differences were observed between the two groups for three polyunsaturated fatty acids. In fact, the docosahexaenoic acid (C22:6n3c) content was significantly increased (p = 0.0116), while the C20 PUFA (C20:3n6c and C20:5n3c) were significantly decreased in twitcher serum samples. Our study shows a specific FA profile that may help to define a possible pattern that could distinguish between twitcher and wild type; these data are likely to provide insight in the identification of new biomarkers to monitor the disease progression and thereby permit the critical analysis of therapeutic approaches.  相似文献   

5.
Seeds of six safflower (C. tinctorius L.) genotypes and 19 accessions of two wild species were analyzed for oil and fatty acid composition. Oil content ranged from 29.20 to 34.00, 20.04 to 30.80 and 15.30 to 20.80% in C. tinctorius, C. oxyacantha Bieb. and C. lanatus L., respectively. The main fatty acids of oleic, linoleic, palmitic and stearic acids composed 96–99% of the total fatty acids in all species. The sum of myristic, palmitoleic, arachidic, and behenic fatty acids in oil of the species ranged from 0.43 to 0.57%. The oleic acid in seed oil of C. tinctorius, C. oxyacantha and C. lanatus ranged from 12.24 to 15.43, 14.11 to 19.28 and 16.70 to 19.77%, respectively. The corresponding ranges for linoleic acid were 71.05 to 76.12, 63.90 to 75.43 and 62.47 to 71.08%. Palmitic acid in seed oil varied from 5.48 to 7.59% in C. tinctorius, 6.09 to 8.33% in C. oxyacantha and 7.44 to 8.78% in C. lanatus. The stearic acid of the seed oil showed a variation of 1.72 to 2.86, 2.50 to 4.87 and 3.14 to 4.79% in genotypes of these species, respectively. The fatty acids composition of oil among the cultivated and wild species were not considerably different, indicating that seed oil of the wild safflower is possibly suitable for human consumption and industrial purposes.  相似文献   

6.
Royal jelly (RJ) is a beehive product that has gained a significant scientific and commercial interest due to its healthy properties. In the present study, lipid content, fatty acid profile and phytosterol amount were determined in eight local and four commercial pure RJ samples. A mixture of diethyl ether/isopropanol 50/1 (v/v) was chosen to extract fat matter from RJ. Lipid amounts ranged from 2.3 and 7.2 % and from 2.0 to 3.2 % of the fresh product in local and commercial RJ, respectively. Fourteen fatty acids and three phytosterols were identified. About 70 % of the total fatty acids consisted of (E)‐10‐hydroxy‐2‐decenoic and 10‐hydroxydecanoic acid. No significant difference was observed between local and commercial samples in regards to the relative amount of individual fatty acids. Sterols were in the range 179–701 and 329–1,097 mg kg?1 of fat in local and commercial RJ, respectively. A significant difference (p ≤ 0.05) was observed within RJ types in regards to the 24‐methylenecholesterol fraction, amounting to 77 and 67 % of identified sterols in local and commercial products, respectively.  相似文献   

7.
Chlorella zofingiensis has great potential for astaxanthin and fatty acid production. This study investigated the accumulation of astaxanthin and total fatty acids (TFA), the fatty acid compositions of astaxanthin esters and TFA in photoautotrophic and heterotrophic C. zofingiensis, respectively. The results displayed that in photoautotrophic cells, 18:3 was the most predominant fatty acid, followed by 16:0, 18:2, and 18:1, while astaxanthin mono-esters (mono-AE) contained only 16:0 and 18:0, and astaxanthin di-esters (di-AE) contained 16:0 mostly, followed by 18:1, 18:0, 18:2, and 18:3. C. zofingiensis accumulated the highest level of astaxanthin and TFA under heterotrophic conditions fed with 30 g L−1 glucose. The percentage of 18:1 in TFA, mono-AE, and di-AE increased from 10.05%, 0%, and 17.76% to 35.80%, 14.84%, and 50.12%, respectively; in contrast, the percentages of 18:3 in TFA and di-AE were observed to decrease from 40.42% and 7.59% to 9.56% and 1.30%, respectively, in comparison with those in photoautotrophic ones. The RNA sequencing (RNA-seq) results showed that the expressions of the genes in astaxanthin and fatty acid biosynthetic pathways were increased under this heterotrophic condition. These results indicated differential accumulation of AE and TFA, especially fatty acid compositions of TFA and AE in photoautotrophic and heterotrophic cells, suggesting a positive correlation between astaxanthin and fatty acid biosynthesis.  相似文献   

8.
Sesame mutants with closed capsules, determinate growth habit and wilt resistance, have been proposed to be suitable for intensive management conditions facilitating mechanized harvesting. The objective of our experiment was to determine the oil content and fatty acid composition of these mutants before they are placed on the market. Oil content and fatty acids were studied in 19 mutants, 6 breeding lines and 4 control source genotypes. The oil contents of the seeds ranged from 46.4 to 62.7%. The mutants had generally a lower oil content than the control genotypes except the wilting tolerant group. For unsaturated fatty acids, oleic acid was higher in the mutants and breeding lines while linoleic acid was lower in the seed oil. However, no mutants or breeding lines were found with radically different composition or with any undesirable lipid component. The closed capsule and determinate growth habit mutants need to be improved for oil content while their fatty acid composition is fine.  相似文献   

9.
Seed oil content of globe artichoke and its composition were assessed under three irrigation regimes, including irrigation at 20, 50, and 80 % depletion of soil available water. Water deficit affected the phenological characteristics, amount and the quality of the oil as well as the phenolics and antioxidant activity of the leaves and capitula. The seed oil content ranged from 18.7 % in 80 % to 22.8 % in 20 % treatment. The fatty acid composition of oil was determined using gas chromatography (GC). The predominant fatty acids in the oil were linoleic (51.68 %), oleic (34.22 %), palmitic (9.94 %), and stearic (3.58 %). Water deficit leads to reduced oil content, linoleic acid, the unsaturated/saturated fatty acid ratio and the iodine value. On the other hand, some other fatty acids such as palmitic and oleic acid and also the ratio of oleic/linoleic acid were elevated due to water deficit. Higher antioxidant activity was observed in capitula (IC50 = 222.6 μg ml?1) in comparison to the leaves (IC50 = 285.8 μg ml?1). Finally, the severe drought stress condition caused to gain higher oil stability, while the highest seed oil content and unsaturated fatty acids in the oil was obtained in non‐stress condition. Moreover, high phenolics, flavonoids and antioxidant activity as well as appreciable dry matter content were obtained in the moderate water stress condition.  相似文献   

10.
In this study, the proximate and fatty acid compositions of the muscle tissue of 186 samples of fish belonging to fifteen species of freshwater fish harvested in subalpine lakes (bleak, shad, crucian carp, whitefish, common carp, pike, black bullhead, burbot, perch, Italian roach, roach, rudd, wels catfish, chub and tench) were investigated. Most of the fish demonstrated a lipid content in the fillet lower than 2.0 g 100 g?1 wet weight (range 0.6–9.7). A strong relationship between feeding behavior and fatty acid composition of the muscle lipids was observed. Planktivorous fish showed the lowest amounts of n‐3 fatty acids (p < 0.05), but the highest monounsaturated fatty acid (MUFA) contents, in particular 18:1n‐9. Conversely, carnivorous fish showed the highest amounts of saturated fatty acids and n‐3 fatty acids (p < 0.05), but the lowest MUFA contents. Omnivorous fish showed substantial proportions of n‐3 fatty acids and the highest contents of n‐6 fatty acids. Principal component analysis showed a distinct separation between fish species according to their feeding habits and demonstrated that the most contributing trophic markers were 18:1n‐9, 18:3n‐3, 22:6n‐3 and 20:4n‐6. The quantitative amounts n‐3 polyunsaturated fatty acid in muscle tissues varied depending on the fish species, the lipid content and the feeding habits. Some species were very lean, and therefore would be poor choices for human consumption to meet dietary n‐3 fatty acid requirements. Nevertheless, the more frequently consumed and appreciated fish, shad and whitefish, had EPA and DHA contents in the range 900–1,000 mg 100 g?1 fresh fillet.  相似文献   

11.
There is limited variability within rapeseed germplasm in Morocco. Induced mutation was recently used to generate novel genetic variability and develop mutant lines combining desirable traits. In this context, nine promising advanced rapeseed M2 mutant lines and the wild-type variety “INRA-CZH2” were evaluated for their seed oil content, fatty acid composition, total phenolic content (TPC), and free-radical scavenging activity (FRSA) by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. The results showed significant variability among all mutants in seed oil content (38.14–42.04%) and fatty acids (SAFA = 5.49–10.99%, MUFA = 50.33–71.62%, PUFA = 22.89–8.68%). The mutant H2M-5 exhibited the highest fraction of MUFA and the lowest proportion of SAFA and PUFA, while the mutant H2M-4 showed the highest SAFA and PUFA amounts and the lowest MUFA level. TPC varied from 2.16 to 4.35 mg GAE/100 g. The highest amount was found in the mutant H2M-1, which is about twice that of other mutants and the wild-type variety. FRSA differed significantly among the samples, and the variations observed for DPPH and ABTS methods were 40.5–59.28% and 40.31–59.86%, respectively. FRSA was positively correlated to TPC in the sampled oils (r = 0.801 and 0.802, P < 0.01). This is the first report emphasizing the biochemical potential of rapeseed varieties and novel mutants in Morocco. H2M-1, H2M-4, and H2M-5 were proposed for the Rapeseed National Breeding Program, as they showed higher levels in some biochemical traits of interest.  相似文献   

12.
The military uses JP-8, a kerosene type hydrocarbon, to fuel most of its vehicles and is seeking a renewable alternative fuel that meets strict JP-8 specifications. Biodiesel is typically a mixture of different alkyl esters produced from the transesterification of triglycerides readily available in plant oils and used cooking oil. To date, no traditional biodiesel meets the requirements for heat of combustion, freezing point, viscosity and oxidative stability to be a stand-alone replacement for JP-8. This work is a fundamental survey of the heat of combustion of single fatty acid esters and a predictive model for estimating the heat of combustion given a known molecular structure. The gross heat of combustion of various C6–C18 fatty acids and the methyl, propyl and isopropyl esters of these fatty acids was measured. This study sought to relate the effect of chain length, degree of unsaturation and branching to the critical fuel property of the gross heat of combustion (H c). It was found that H c (kJ/g) increased with chain length. A nearly linear relationship was found between wt% carbon and hydrogen, and H c. Group contribution models previously published for hydrocarbons and polymers were modified to more accurately predict the heat of combustion of the fatty acids and esters. Modification of the molar heat values of carboxylic acid, methyl, and methylene groups improved correlation of the model with the experimental results.  相似文献   

13.
The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n‐3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1‐14C] 18:3n‐3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1‐14C] 18:3n‐3 to 18:4n‐3, 20:4n‐3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n‐3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n‐3 by both DHA and LA. Possibly the route by 20:3n‐3 and then Δ8 desaturation to 20:4n‐3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health‐beneficial FA in fish fed diets with low levels of EPA and/or DHA.  相似文献   

14.
Southern bluefin tuna (SBT, Thunnus maccoyii) aquaculture is a highly valuable industry, but research on these fish is hampered by strict catch quotas and the limited success of captive breeding. To address these limitations, we have developed a SBT cell line (SBT-E1) and here we report on fatty acid metabolism in this cell line. The SBT-E1 cells proliferated well in standard Leibovitz’s L-15 cell culture medium containing fetal bovine serum (FBS) as the source of fatty acids. Decreasing the FBS concentration decreased the cell proliferation. Addition of the C18 polyunsaturated fatty acids (PUFA) α-linolenic acid (ALA, 18:3n-3) or linoleic acid (LNA, 18:2n-6) to the cell culture medium had little effect on the proliferation of the cells, whereas addition of the long-chain PUFA (LC-PUFA) arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) or docosahexaenoic acid (DHA, 22:6n-3) significantly reduced the proliferation of the cells, especially at higher concentrations and especially for DHA. Addition of vitamin E to the culture medium overcame this effect, suggesting that it was due to oxidative stress. The fatty acid profiles of the total lipid from the cells reflected those of the respective culture media with little evidence for desaturation or elongation of any of the fatty acids. The only exceptions were EPA and ARA, which showed substantial elongation to 22:5n-3 and 22:4n-6, respectively, and DHA, which was significantly enriched in the cells compared with the culture medium. The results are discussed in light of the dietary PUFA requirements of SBT in the wild and in aquaculture.  相似文献   

15.
Lipid content and fatty acid composition were determined in edible meat of fifteen marine fish species caught on the Southeast Brazilian coast and two from East Antarctic. Most of the fish had lipid amounts lower than 10% of their total weight. Palmitic acid (C16:0) predominated, accounting for 54–63% of the total amount of saturated fatty acids. Oleic acid (C18:1n-9) was the most abundant (49–69%) monounsaturated fatty acid, and docosahexaenoic acid (DHA) was the predominant polyunsaturated fatty acid (PUFA), accounting for 31–84% of n-3 PUFA. n-3 PUFA level were highest in Antarctic fish meat, comprising 45% of the total fatty acid content, which consisted of mainly EPA (16.1 ± 1.5 g/100 g lipids) and DHA (24.8 ± 2.4 g/100 g lipids). The amounts of EPA + DHA in g/100 g of lipids on the Southeast Brazilian coast and Antarctic fish species investigated were found to be similar: 42.0 ± 1.7 for Bonito cachorro, 41.0 ± 2.3 for Atum, and 39.4 ± 1.8 for peixe porco, respectively. All the studied species exhibited an n-3/n-6 ratio higher than 3, which confirms the great importance of Southeast Brazilian coast fish as a significant dietary source of n-3 PUFA.  相似文献   

16.
The lipid content and fatty acid (FA) composition of seeds from the Asian ginseng Panax ginseng growing naturally in taiga forests of the Russian Far East and seeds from cultivated ginseng were studied in this work. The total lipid content of seeds from both wild and cultivated plants was 9–12 % of fresh weight. FA were analyzed as isopropyl esters on a polar capillary column BD‐225, which allows good separation of petroselinic and oleic acids. The structure of FAs was confirmed using GC–MS of fatty acid methyl ester (FAME) and 4,4‐dimethyloxazoline derivatives. In all the seed samples, the major FA was petroselinic acid 18:1(n‐12) which comprised more than 60 %; the contents of oleic and linoleic acids were lower (15–17 and 15–16 %, respectively). Earlier, a higher level (>80 %) of oleic acid had been reported for ginseng seeds. This discrepancy can be explained by an insufficient separation of these acids on standard columns used for GC of FAME. In general, seeds of wild and cultivated ginseng are very similar in lipid content and FA composition.  相似文献   

17.
In this study, differentiation of vegetable oils and determination of their major fatty acid (FA) composition were performed using Raman spectral barcoding approach. Samples from seven different sources (sunflower, corn, olive, canola, mustard, soybean and palm) were analyzed using Raman spectroscopy. Second derivative of the spectral data was utilized to generate unique barcodes of oils. Chemometric analyses, namely, principal component analysis (PCA) and partial least square (PLS) methods were used for data analysis. PCA was applied for classification of the samples according to the differences in their levels arising from their barcode data. A successful differentiation based on second derivative barcodes of Raman spectra (2D‐BRS) of vegetable oils was obtained. In addition, PLS method was applied on 2D‐BRS in order to determine the major FA composition of these samples. Coefficient of determination values for palmitic, stearic, oleic, linoleic, α‐linolenic, cis‐11 eicosenoic, erucic and nervonic acids were in the range of 0.970–0.989. Limit of detection and limit of quantification values were found to be satisfactory (0.09–8.09 and 0.30–26.95 % in oil) for these fatty acids . Advantages of both chemometric analysis and spectral barcoding approach have been utilized in the present study. Taking the second derivative of the Raman spectra has minimized background variability and sensitivity to intensity fluctuations. Spectral conversion to the barcodes has further increased the quality of information obtained from Raman spectra and also made it possible to improve the visualization of the data. Converting Raman spectra of oils into barcodes enables simpler presentation of the valuable information, and still allows further analysis such as classification of vegetable oils and prediction of their major fatty acids with high accuracy.  相似文献   

18.
Milk fat is known to contain one of the highest number of fatty acids of all edible oils. Some of these fatty acids are known to be valuable (e.g. conjugated linoleic acids, furan fatty acid) and other as undesirable (e.g. saturated and some trans-fatty acids) food ingredients. However, a comprehensive picture on the presence of many trace fatty acids has not been achieved. For this reason we have developed an analysis scheme based on the conversion of the fatty acids into methyl esters. The fatty acid methyl esters were then fractionated by urea complexation. Both the filtrate of the urea complexation (~4 % of the sample weight) and the original sample were fractionated by high-speed counter-current chromatography (HSCCC). The resulting fractions were analyzed by GC/MS analysis. With this method 430 fatty acids were detected in one single butter sample. More than 230 fatty acids had two or more double bonds. In addition to the widely known spectrum of fatty acids we also detected a range of cyclohexyl fatty acids (five homologues) and methyl-branched fatty acids (including short chain and even-numbered anteiso-fatty acids), conjugated tetradecadienoic acids along with the novel ω-oxo-fatty acids (seven homologues). The reported relative retention time on the polar column may serve as a data base for the screening of other samples for this profusion of fatty acids.  相似文献   

19.
The objective of this study was to examine the effects of flaxseed (FLAX) oil or 16-carbon n-7 fatty acid -enhanced fish oil (Provinal; POA) supplementation on serum, liver and skeletal muscle fatty acid concentrations, serum ceramide and plasma insulin concentrations, and gene expression. Lambs [n = 18; 42 ± 5.6 kg body weight (BW); 7 months] were individually fed one of the three treatments: (1) control (CON), no oil supplement, (2) FLAX; at 0.1% of BW, or (3) POA at 0.1% of BW for 60 days. Daily feed intake and weight gain were decreased by 21% and 34%, respectively, for POA than FLAX. Liver and skeletal muscle concentrations of palmitoleic acid were greater by 396% and 87%, respectively, for POA than FLAX; whereas, liver and skeletal muscle α-linolenic acid concentrations were greater by 199% and 118%, respectively, for FLAX. Supplementation with POA also had greater serum and tissue concentrations of eicosapentaenoic and docosahexaenoic acids. Serum glucose and plasma insulin concentrations were elevated with FLAX supplementation at the end of the study. Supplementation with POA altered serum ceramide concentrations compared to CON or FLAX. Oil supplementation, both FLAX and POA, downregulated expression of unesterified fatty acid receptors (FFAR) 1 and FFAR4 in the liver; however, oil supplementation upregulated expression of FFAR1 in muscle. Interleukin-6 (IL6) and tumor necrosis factor-α (TNFA) expression were downregulated with oil supplementation in the liver; however, FLAX upregulated TNFA in muscle. These results show that oil supplementation can enhance uptake and deposition of unique fatty acids that alter ceramide concentrations and gene expression in tissues.  相似文献   

20.
The aim of this study was to determine the effect of n3 polyunsaturated fatty acids (PUFA) on canine adipose tissue secretion of adiponectin, interleukin‐6 (IL6), and tumor necrosis factor‐α (TNFα). Subcutaneous and omental visceral adipose tissue samples were collected from 16 healthy intact female dogs. Concentrations of adiponectin were measured in mature adipocyte cultures, and concentrations of IL6 and TNFα were measured in undifferentiated stromovascular cell (SVC) cultures following treatment with eicosapentaenic acid (EPA, 20:5n‐3), arachidonic acid (ARA, 20:4n‐6), or palmitic acid (PAM, 16:0) at 25, 50, or 100 μM. Secretion of adiponectin from mature adipocytes was higher (p < 0.001) following EPA treatment at 50 μM compared to control in subcutaneous tissue, and higher following EPA treatment compared to PAM treatment at 25 μM in both subcutaneous (p < 0.001) and visceral tissues (p = 0.010). Secretion of IL6 from SVC derived from subcutaneous tissue was lower following EPA treatment and higher following PAM treatment compared to control both at 50 μM (p = 0.001 and p = 0.041, respectively) and 100 μM (p = 0.013 and p < 0.001, respectively). These findings of stimulation of adiponectin secretion and inhibition of IL6 secretion by EPA, and stimulation of IL6 secretion by PAM, are consistent with findings of increased circulating concentrations of adiponectin and decreased circulating concentration of IL6 in dogs supplemented with dietary fish oil, and show that the effect of fish oil on circulating concentrations of adiponectin and IL6 is, at least partially, the result of local effects of EPA and PAM on adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号