首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Catalysis》2006,237(1):175-189
In this work, transient and SSITKA experiments with isotopic 18O2 were conducted to study the nature of oxygen species participating in the reaction of ethane oxidative dehydrogenation to ethylene and obtain insight in the mechanistic aspects of the ODH reaction over Ni-based catalysts. The study was performed on NiO, a typical total oxidation catalyst, and a bulk Ni–Nb–O mixed-oxide catalyst (Ni0.85Nb0.15) developed previously [E. Heracleous, A.A. Lemonidou, J. Catal., in press], a very efficient ethane ODH material (46% ethene yield at 400 °C). The results revealed that over both materials, the reaction proceeds via a Mars–van Krevelen-type mechanism, with participation of lattice oxygen anions. However, the 18O2 exchange measurements showed a different distribution of isotopic oxygen species on the two materials. The prevalent formation of cross-labelled oxygen species on NiO indicates that dissociation of oxygen is the fast step of the exchange process, leading to large concentration of intermediate electrophilic oxygen species on the surface, active for the total oxidation of ethane. Larger amounts of doubly exchanged species were observed on the Ni–Nb–O catalyst, indicating that doping with Nb makes diffusion the fast step of the process and suppresses formation of the oxidizing species. Kinetic modeling of ethane ODH over the Ni0.85Nb0.15 catalyst by combined genetic algorithm and nonlinear regression techniques confirmed the above, since the superior model is based on a redox parallel-consecutive reaction network with the participation of two types of active sites: type I, responsible for the ethane ODH and ethene overoxidation reaction, and type II, active for the direct oxidation of ethane to CO2. The kinetic model was able to successfully predict the catalytic performance of the Ni0.85Nb0.15 catalyst in considerably different experimental conditions than the kinetic experiments (high temperature and conversion levels).  相似文献   

2.
《Journal of Catalysis》2006,237(1):162-174
This work demonstrates the high potential of a new class of catalytic materials based on nickel for the oxidative dehydrogenation of ethane to ethylene. The developed bulk Ni–Nb–O mixed oxides exhibit high activity in ethane ODH and very high selectivity (∼90% ethene selectivity) at low reaction temperature, resulting in an overall ethene yield of 46% at 400 °C. Varying the Nb/Ni atomic ratio led to an optimum catalytic performance for catalysts with Nb/Ni ratio in the range 0.11–0.18. Detailed characterization of the materials with several techniques (XRD, SEM, TPR, TPD-NH3, TPD-O2, Raman, XPS, electrical conductivity) showed that the key component for the excellent catalytic behavior is the Ni–Nb solid solution formed upon the introduction of niobium in NiO, evidenced by the contraction of the NiO lattice constant, since even small amounts of Nb effectively converted NiO from a total oxidation catalyst (80% selectivity to CO2) to a very efficient ethane ODH material. An upper maximum dissolution of Nb5+ cations in the NiO lattice was attained for Nb/Ni ratios ⩽0.18, with higher Nb contents leading to inhomogeneity and segregation of the NiO and Nb2O5 phases. A correlation between the specific surface activity of the catalysts and the surface exposed nickel content led to the conclusion that nickel sites constitute the active centers for the alkane activation, with niobium affecting mainly the selectivity to the olefin. The incorporation of Nb in the NiO lattice by either substitution of nickel atoms and/or filling of the cationic vacancies in the defective nonstoichiometric NiO surface led to a reduction of the materials nonstoichiometry, as indicated by TPD-O2 and electrical conductivity measurements, and, consequently, of the electrophilic oxygen species (O), which are abundant on NiO and are responsible for the total oxidation of ethane to carbon dioxide.  相似文献   

3.
A method for the preparation of NiO and Nb–NiO nanocomposites is developed, based on the slow oxidation of a nickel-rich Nb–Ni gel obtained in citric acid. The resulting materials have higher surface areas than those obtained by the classical evaporation method from nickel nitrate and ammonium niobium oxalate. These consist in NiO nanocrystallites (7–13 nm) associated, at Nb contents >3 at.%., with an amorphous thin layer (1–2 nm) of a niobium-rich mixed oxide with a structure similar to that of NiNb2O6. Unlike bulk nickel oxides, the activity of these nanooxides for low-temperature ethane oxidative dehydrogenation (ODH) has been related to their redox properties. In addition to limiting the size of NiO crystallites, the presence of the Nb-rich phase also inhibits NiO reducibility. At Nb content >5 at.%, Nb–NiO composites are thus less active for ethane ODH but more selective, indicating that the Nb-rich phase probably covers part of the unselective, non-stoichiometric, active oxygen species of NiO. This geometric effect is supported by high-resolution transmission electron microscopy observations. The close interaction between NiO and the thin Nb-rich mixed oxide layer, combined with possible restructuration of the nanocomposite under ODH conditions, leads to significant catalyst deactivation at high Nb loadings. Hence, the most efficient ODH catalysts obtained by this method are those containing 3–4 at.% Nb, which combine high activity, selectivity, and stability. The impact of the preparation method on the structural and catalytic properties of Nb–NiO nanocomposites suggests that further improvement in NiO-catalyzed ethane ODH can be expected upon optimization of the catalyst.  相似文献   

4.
A 4-step kinetic model of CO2-assisted oxidative dehydrogenation (ODH) of propane to C2/C3 olefins over a novel MoOx/La2O3–γAl2O3 catalyst was developed. Kinetic experiments were conducted in a CREC Riser Simulator at various reaction temperatures (525–600 °C) and times (15–30 s). The catalyst was highly selective towards propylene at all combinations of the reaction conditions. Langmuir-Hinshelwood type kinetics were formulated considering propane ODH, uni- and bimolecular cracking of propane to produce a C1-C2 species. It was found that the one site type model adequately fitted the experimental data. The activation energy for the formation of propylene (67.8 kJ/mol) is much lower than that of bimolecular conversion of propane to ethane and ethylene (303 kJ/mol) as well as the direct cracking of propane to methane and ethylene (106.7 kJ/mol). The kinetic modeling revealed the positive effects of CO2 towards enhancing the propylene selectivity over the catalyst.  相似文献   

5.
The catalytic properties of undoped and K-doped (K/V atomic ratio of 0.5) Al2O3-supported vanadia catalysts (4.5 wt% of V2O5) for the oxidation ofn-butane and ethane were studied. Isolated tetrahedral V5+ species are mainly observed in both undoped and K-doped samples. The incorporation of potassium decreases both the reducibility of surface vanadium species and the number of surface acid sites. Potassium-free vanadium catalysts show a high selectivity during the oxidative dehydrogenation (ODH) of ethane but a low selectivity during the ODH ofn-butane. However, the presence of potassium on the vanadium catalysts strongly influences their catalytic properties, increasing the selectivity to C4-olefins fromn-butane and decreasing the selectivity to ethene from ethane. The role of the acid-base characteristics of catalysts on selectivity to ODH reactions is proposed.On leave from the Department of Industrial Chemistry and Materials, V. le Risorgimento 4, 40136 Bologna, Italy.  相似文献   

6.
The activity of Ni?CAl mixed oxides obtained by the thermal pre-treatment of Ni?CAl hydrotalcite-like precursors was studied in the ODH of ethane and propane. The activity of the Ni?CAl mixed oxide catalysts was studied with respect to (i) the role of Ni content and (ii) the role of temperature during Ni?CAl HTs thermal pre-treatment. The structure analysis and the activity of Ni?CAl mixed oxides were discussed in three groups; (A) the catalysts pre-treated at 500???C, (B) the catalysts pre-treated at 600???C and (C) the Ni2?CAl catalyst with constant Ni content pre-treated at 500?C900???C. Ni?CAl mixed oxides were active and selective catalysts in the ODH of ethane even at 450???C. On the other hand, the catalysts posses low selectivity to propene. It is supposed that the interaction of NiO with alumina phase plays the critical role in the active and selective catalysts. The Ni?CAl mixed oxides were characterized by XRD, H2-TPR and diffuse reflectance spectroscopy.  相似文献   

7.
Vanadium and/or magnesium substituted aluminophosphate with ALPO4-5 structure have been prepared by hydrothermal synthesis. These catalysts have been tested for the oxidative dehydrogenation (ODH) of ethane. ALPO4-5 has a low activity and low selectivity for the ODH of ethane. The presence of Mg2+ ions in MgAPO-5 increases the selectivity to ethene, while the presence of V5+ species in VAPO-5 increases both the activity and the selectivity for this reaction. The presence of Mg2+ and V5+ species in the vanadium-magnesium alumino-phosphate (MgVAPO-5) results in a more selective catalysts for the ODH of ethane. The behavior of MgVAPO-5 could be attributed to the presence of acid sites (Mg2+) near to the redox sites (V5+) in the molecular sieve framework.  相似文献   

8.
9.
The oxidative coupling of methane to ethane and ethene has been investigated on chlorine-containing catalysts. The sensitivity of the product distribution to temperature, gas composition, flow-rate, catalyst mass, and reactor dimensions has been demonstrated. It has been found that a long contact time is an important factor in raising the C2H4/C2H6 ratio, and that reactions within the catalyst bed are important for the conversion of ethane to ethene. Back-mixing of the reagents into the gas space above the catalyst bed tended to lead to combustion, but appeared to have little influence on enhancing the C2H4/C2H6 ratio. Experiments have been performed with Sm2O3, SmOCl and SmCl3 and with various pairs of these catalysts when separated by a gas space. These experiments have demonstrated the importance, under certain circumstances, of gas phase chlorine species, especially radicals, in the conversion of ethane to ethene. However, the results also show that these chlorine-induced gas phase reactions occur within the voids between the particles in the catalyst bed and not in the free gas space outside the catalyst bed.  相似文献   

10.
In the fluid catalytic cracking reactor heavy gas oil is cracked into more valuable lighter hydrocarbon products. The reactor input is a mixture of hydrocarbons which makes the reaction kinetics very complicated due to the involved reactions. In this paper, a four-lump model is proposed to describe the process. This model is different from others mainly in that the deposition rate of coke on catalyst can be predicted from gas oil conversion and isolated from the C1C4 gas yield. This is important since coke supplies heat required for endothermic reactions occurring in the reactor. By this model we can also conclude that the C1–C4 gas yield increases with increasing reactor temperature, while production of gasoline and coke decreases.  相似文献   

11.
Carbon dioxide reforming of polyethylene was carried out. Pyrolysis and catalytic carbon dioxide reforming were combined. Polyethylene was packed at the bottom of the reactor and the catalyst, Pd/Al2O3, was packed at the top of the reactor. The pyrolysis of the polyethylene occurred at the bottom of the reactor, and the pyrolysis products reacted with carbon dioxide on the catalyst bed. Carbon dioxide reforming occurred on the catalyst bed zone. Hydrogen, carbon monoxide, methane, ethane, ethene were produced at 910 and 720 K which were the catalyst and polyethylene temperature, respectively. Polyethylene was completely reformed to carbon monoxide and hydrogen when catalyst temperature was increased or polyethylene temperature was decreased.  相似文献   

12.
The partial oxidation of ethane to acetic acid on promoted VPO with Mo, using an Mo/V ratio of 0.2, has been investigated experimentally and theoretically. The reaction was carried out in a differential reactor at 1360 kPa, in the temperature range 548–623 K, with space times of 1.2–3.6 s and oxygen concentrations of 5–20%. The rate of oxidation of ethane was found to be approximately first order in ethane and zero order in oxygen at 548 K. At 623 K, the order of reaction with respect to ethane decreased to about 0.5, while that for oxygen increased to about 0.27. A kinetic model has been developed, which assumes that adsorbed oxygen reacts with ethane to form ethene, acetic acid, CO and CO2. Ethene is further oxidized to acetic acid, CO and CO2 through a redox mechanism. The model exhibits good agreement with the experimental data. © 2000 Society of Chemical Industry  相似文献   

13.
Metathesis between decene and ethene to propene over a WO3/SiO2 catalyst was studied. The dependency of the conversion of decene, selectivity to propene, and working lifetime of the catalyst on ethane‐to‐decene molar ratio and temperature was evaluated. Low temperature was found to be favorable to the production of C6–C9 olefins, while high temperature enhanced C10+ olefins. The working lifetime of the catalyst decreased with the weight hourly space velocity. The optimum reaction conditions for the metathesis process of decene and ethene to propene were determined. An obvious induction period was found to exist in the metathesis reaction.  相似文献   

14.
The main objective of this study is to predict the performance of an industrial‐scale (ID = 5.8 m) slurry bubble column reactor (SBCR) operating with iron‐based catalyst for Fischer–Tropsch (FT) synthesis, with emphasis on catalyst deactivation. To achieve this objective, a comprehensive reactor model, incorporating the hydrodynamic and mass‐transfer parameters (gas holdup, εG, Sauter‐mean diameter of gas bubbles, d32, and volumetric liquid‐side mass‐transfer coefficients, kLa), and FT as well as water gas shift reaction kinetics, was developed. The hydrodynamic and mass‐transfer parameters for He/N2 gaseous mixtures, as surrogates for H2/CO, were obtained in an actual molten FT reactor wax produced from the same reactor. The data were measured in a pilot‐scale (0.29 m) SBCR under different pressures (4–31 bar), temperatures (380–500 K), superficial gas velocities (0.1–0.3 m/s), and iron‐based catalyst concentrations (0–45 wt %). The data were modeled and predictive correlations were incorporated into the reactor model. The reactor model was then used to study the effects of catalyst concentration and reactor length‐to‐diameter ratio (L/D) on the water partial pressure, which is mainly responsible for iron catalyst deactivation, the H2 and CO conversions and the C5+ product yields. The modeling results of the industrial SBCR investigated in this study showed that (1) the water partial pressure should be maintained under 3 bars to minimize deactivation of the iron‐based catalyst used; (2) the catalyst concentration has much more impact on the gas holdup and reactor performance than the reactor height; and (3) the reactor should be operated in the kinetically controlled regime with an L/D of 4.48 and a catalyst concentration of 22 wt % to maximize C5+ products yield, while minimizing the iron catalyst deactivation. Under such conditions, the H2 and CO conversions were 49.4% and 69.3%, respectively, and the C5+ products yield was 435.6 ton/day. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3838–3857, 2015  相似文献   

15.
Based on the kinetics of benzene hydrogenation, pore diffusion and catalyst deactivation, time-dependent effectiveness behaviour of a single Ni? SiO2? Al2O3 catalyst pellet where the chemical reaction rate is determined by pore diffusion was simulated for different conditions of operation. Poisoning kinetics were measured in a series of differential reactor experiments at atmospheric total pressure at temperatures ranging from 403 to 473 K. A computed effectiveness factor has been compared with experimental values for a catalyst pellet of industrial size. A good degree of correlation between theoretical prediction and the experimental results was found.  相似文献   

16.
This contribution evaluates systematic but rigorous methodologies to characterize kinetics and heat transfer mechanisms and states statistical and phenomenological criteria to model an industrial-scale wall-cooled packed-bed reactor for the oxidative dehydrogenation of ethane over a MoVTeNbO catalyst. A set of kinetic formalisms was submitted to regression analyses with the reparametrized form of the Arrhenius and van't Hoff equations. Heat transfer parameters (HTP) were determined by evaluating either the effect of hydrodynamics or the type of temperature measurements on reactor simulations. Eley–Rideal formalism led to the most proper approach to describe kinetics, presenting thermodynamic consistency and statistical confidence; whereas the HTP determined out of radial and axial measurements and accounting for hydrodynamics led to the determination of the most reliable transport parameters presenting phenomenological and statistical significance. These results stated criteria to model with confidence the performance of the studied technology, paving the way for its further rigorous design, optimization, or intensification.  相似文献   

17.
The effects of some transition‐ and lanthanide‐metal oxides in LiCl/sulfated‐zirconia (SZ) catalysts on catalytic behavior in the oxidative dehydrogenation of ethane were investigated. It is found that modification of LiCl/SZ by metal oxides significantly improves the catalytic activity and ethene yield. Among those additives, Ni and Nd oxides show the best promoting effect in terms of ethane conversion and ethene yield. 93% ethane conversion with 83% selectivity to ethene has been achieved over the Nd2O3–LiCl/SZ catalyst at 650°C. In addition, those oxide‐promoted LiCl/SZ catalysts are also found to exhibit a longer stability in catalytic performance. Metal‐oxide additives change the chemical structure and surface redox properties, which accounts for the enhancement of activity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Vanadium oxides supported on metal oxide, i.e. Al2O3, MgO and Mg-Al mixed oxide, and V-containing microporous materials (VAPO-5 and MgVAPO-5) have been tested in the oxidative dehydrogenation of C2-C4 alkanes. In all cases, tetrahedral vanadium species (isolated and/or associated) were mainly observed from51V-NMR and diffuse reflectance spectroscopies. The reducibility of V5+-species, determined from the onset-reduction temperature, decreases as follows: VOx/AL > VAPO-5 > MgVAPO-5 =VOx/MG > VOx/MG + AL. The acid character of catalysts, determined from the FTIR spectra of pyridine adsorbed, decreases as: MgVAPO-5 > VOx/AL > VAPO-5 > VOx/MG + AL > VOx/MG. A similar trend between V-reducibility of the catalyst and its catalytic activity for the alkane conversion was observed. However, the selectivity to olefins depends on the acid-base character of catalyst and the alkane fed. In the ODH ofn-butane, the higher the acid character of the catalyst the lower the selectivity to C4-olefins, while in the ODH of ethane an opposite trend between the catalyst acidity and the selectivity to ethene was observed.On leave from the Department of Industrial Chemistry and Materials, V. le Risorgimento 4, 40136 Bologna, Italy.  相似文献   

19.
Experimental and theoretical studies on the partial hydrogenation of vegetable oil in a monolithic stirrer reactor are reported. A complete mathematical model of the reactor was developed, including hydrogenation and isomerization kinetics, catalyst deactivation, external gas–liquid and liquid–solid as well as internal mass transfer. The experimental studies were carried out in a Pd/Al2O3/Al monolithic stirrer reactor, at a wide range of temperatures (353–373 K), pressures (414–552 kPa), and catalyst loadings (0.00084–0.00527 kgPd,exp m?3). Based on this model, simulated data can be used to evaluate the catalyst (Pd/Al2O3/Al) and the hydrogenation process in consecutive catalytic tests under different operating conditions. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3524–3533, 2014  相似文献   

20.
The formation of ethene from ethane and methane in a silica reactor has been studied both in the presence and in the absence of chloride-containing catalysts. Some homogeneous conversion of ethane to ethene occurs in the gas phase through direct dehydrogenation, oxidative dehydrogenation, and, when HCl is present, chlorine radical induced reactions. Methyl chloride is detected in the gas phase but has no influence on the conversion of ethane to ethene. It is shown that under typical catalytic conditions, when a chloride-modified catalyst is used, ethane is mostly produced in the catalyst bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号