首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对特定颗粒浓度范围颗粒团聚作用导致的曳力下降问题,基于传统曳力模型在不同颗粒浓度段的特性分析,选择适用于不同颗粒浓度区间的曳力模型,通过光滑函数得到改进的曳力模型,并耦合欧拉双流体模型对2D鼓泡流化床进行数值模拟. 结果表明,与Gidaspow和Syamlal-O'Brien模型相比,改进的曳力模型对床层局部压降的预测结果更好;随表观气速增加,改进的曳力模型能更准确地预测床层膨胀;当表观气速Ug=0.46 m/s时,改进的曳力模型对径向颗粒浓度分布的模拟结果明显好于Syamlal-O'Brien模型.  相似文献   

2.
    
The fluidization and heat transfer behaviors of a turbulent fluidized bed were investigated using computational fluid dynamics (CFD). The effects of inlet superficial velocity on heat transfer behaviors in a turbulent fluidized bed were analyzed and compared with those operated in other fluidization regimes. The effects of using particles belonging to different Geldart groups in a turbulent fluidized bed on fluidization and heat transfer behaviors were evaluated. For both fluidization regimes investigated, the solids temperature distribution during the heat transfer process became less uniform when the particle size was reduced.  相似文献   

3.
    
In order to enhance the uniformity of the radial solids distribution and thereby the performance of industrial circulating fluidized‐bed (CFB) risers, an approach by using the air jet from the riser circumference is proposed. The Eulerian‐Eulerian computational fluid dynamics (CFD) model with the kinetic theory of granular flow is adopted to simulate the gas‐solids two‐phase flow in a CFB riser with fluid catalytic cracking (FCC) particles. The numerical results indicate that by employing the circumferential air jet approach under appropriate jet velocities, the maximum solids concentration in the near‐wall region can be greatly reduced, the entrance region can be shortened, and the uniformity of the flow structure can be significantly improved.  相似文献   

4.
Flow properties of 10 nm silica particles were determined in a two-story circulating fluidized bed riser. The pressure drop has a minimum at a velocity of 0.3 m/s. Particle concentrations were measured with a gamma ray densitometer. The solid fluxes were measured with a suction probe. From these measurements the nanoparticle viscosity was estimated. The measured viscosity is close to an estimate obtained from kinetic theory, assuming Brownian motion of nanoparticles. The viscosity and the previously measured solid stress modulus were used in a multiphase CFD code to study the behavior of explosive dissemination of mixtures of nanoparticles and micron size particles.The dissemination process was divided into two steps: early-time hydrodynamics and dissemination into an atmosphere. In the early-time hydrodynamic step the particles were accelerated by means of a high pressure and high temperature gas from a plastic explosive. When the device containing the particles broke, the early-time hydrodynamic velocities, concentrations, pressure and temperatures were used as the initial conditions for the dissemination step. This study shows how to use CFD to design a dissemination device that will prevent the overheating of a mixture of particles to be disseminated. The computed phenomena were similar to the experimental observations. The nanoparticles formed a cloud with a vortex ring structure for dissemination of small micron size particles and nanoparticles. For the dissemination of 100 μm aluminum and 10 nm silica particles, there was no vortex ring structure. As expected, the larger particles settled on the ground. The computed ground concentrations can be used to compare the model with observations, such as the covering of ground by dust after volcanic eruptions.  相似文献   

5.
It is shown that the two-phase model for bubbling gas—solid fluidized beds can be extended to bubble column slurry reactors operating in the heterogeneous flow regime by proper definition of the ‘dilute’ and ‘dense’ phases. The ‘dilute’ phase in a bubble column slurry reactor is to be identified with the fast-rising ‘large’ bubbles. The ‘dense’ phase consists of the slurry phase in which ‘small’ bubbles are finely dispersed. With the aid of extensive experimental data obtained in columns of 0.1, 0.19 and 0.38 m diameter it is shown that the rise velocity of the ‘dilute’ phase for gas—solid fluid beds and slurry reactors show analogous scale dependencies and can be modelled in a similar manner. It is also demonstrated that fluidized multiphase reactors can be modelled in a common manner using Computational Fluid Dynamics (CFD) within the Eulerian framework. It is concluded that CFD is an invaluable tool for scaling up of fluidized multiphase reactors.  相似文献   

6.
以带冷却盘管的大型高温费托流化床反应器为研究对象,开展三维计算流体力学模拟研究。传统双流体模型基于局部平均的假设,认为单位控制体内气固两相均匀分布,网格尺寸必须足够小才能正确揭示局部非均匀结构的所有细节。采用双流体模型模拟大型工业化流化床装置时,将导致网格数量过于庞大,远超现有计算能力。为提高计算效率的同时不损失模拟精度,提出了基于局部非均匀假设、适用于粗网格的拟泡-乳三相非均匀曳力(PBTD)模型。该模型将流化床分为乳化相气体、乳化相颗粒以及气泡三相,分别建立守恒方程,体现气泡的非均匀特性对气固曳力的影响。乳化相内气固曳力以及气泡相与乳化相内颗粒的曳力分开考虑。采用PBTD模型耦合传质和反应模型,建立基于局部非均匀假设的高温费托合成反应器三维流动-传递-反应模型,包括各相守恒控制方程、气泡尺寸模型、相间物质和动量交换模型、高温费托合成反应动力学模型以及初始和边界条件,预测反应器内的流场和组分浓度分布。研究结果表明:在粗网格条件下,非均匀曳力模型可以预测床层内相含率的分布情况,预测的床层膨胀高度与经验公式计算值接近,偏差为1.2%。反应器出口气体组分的质量分数与试验测量值相近,偏差在1.5%~16.0%。模拟结果证实,基于非均匀假设的PBTD模型适用于模拟工业规模的鼓泡流化床反应器,对其设计开发和工业运行具有指导价值。  相似文献   

7.
A comprehensive two-dimensional transient Eulerian model combined with the kinetic theory of granular flow was developed to obtain the hydrodynamic and chemical reaction behaviors in tapered circulating fluidized bed reactor risers. In this study, the focus was on the chemical reactions and its behaviors inside three different riser geometries. The model was verified by using an experimental dataset from the literature, and was then used for both predicting the hydrodynamic behaviors and computing the system turbulent properties. The tapered-out riser improves the system turbulence or mixing which can be explained by the dispersion coefficients. On the other hand, the tapered-in riser increases the solid particle residence time and gives a more uniform temperature distribution, because it does not have sufficient force to support the weight of the particles. The same riser geometries but with the addition of the chemical reaction were then used for evaluating the previously proposed criteria that the riser geometry should be chosen with respect to the characteristics of the reactions. Reactions with a medium reaction rate were best suited to the typical riser, whilst reactions with a fast and slow reaction rate best fitted the tapered-out and tapered-in risers, respectively.  相似文献   

8.
Experiments have shown that distributed secondary gas injection via a fractal injector in fluidized beds can significantly reduce the bubble size, and may also decrease the bubble fraction. In order to gain insight into the distribution of the gas between the phases and the mechanisms behind these effects simulations of small bubbling fluidized beds with one or two secondary gas injection points were carried out using a discrete particle model. Although the systems are very small, so that wall effects cannot be excluded, the model predicts that the bubble size and bubble fraction both decrease with secondary gas injection, while the gas flow through the dense phase increases. The secondary gas tends to stay in the dense phase, which limits the amount of gas available to form bubbles and is the main contributor to the decrease in the bubble size and fraction. The gas-solid contact improves as a result.  相似文献   

9.
In this study, the Eulerian computational fluid dynamics model with the kinetic theory of granular flow model was effectively used to compute the system turbulences and dispersion coefficients in a circulating fluidized bed (CFB) downer. In addition, the obtained model was used to simulate all the system velocities.  相似文献   

10.
Two different approaches to constitutive relations for filtered two‐fluid models (TFM) of gas–solid flows are deduced. The first model (Model A) is derived using systematically filtered results obtained from a highly resolved simulation of a bubbling fluidized bed. The second model (Model B) stems from the assumption of the formation of subgrid heterogeneities inside the suspension phase of fluidized beds. These approaches for the unresolved terms appearing in the filtered TFM are, then, substantiated by the corresponding filtered data. Furthermore, the presented models are verified in the case of the bubbling fluidized bed used to generate the fine grid data. The numerical results obtained on coarse grids demonstrate that the computed bed hydrodynamics is in fairly good agreement with the highly resolved simulation. The results further show that the contribution from the unresolved frictional stresses is required to correctly predict the bubble rise velocity using coarse grids. © 2013 American Institute of Chemical Engineers AIChE J, 60: 839–854, 2014  相似文献   

11.
A kinetic theory based hydrodynamic model with experimentally determined sorption rates for reaction of CO2 with K2CO3 solid sorbent is used to design a compact circulating fluidized bed sorption‐regeneration system for CO2 removal from flue gases. Because of high solids fluxes, the sorber does not require internal or external cooling. The output is verified by computing the granular temperatures, particle viscosities, dispersion, and mass transfer coefficients. These properties agree with reported measurement values except the radial dispersion coefficients, which are much higher due to the larger bed diameter. With the solid sorbent prepared according to published information, the CO2 removal percentage at the riser top is 69.16%. To improve the CO2 removal, an effort is needed to develop a better sorbent or to simply lower the inlet gas velocity to operate in a denser mode, leading to a larger system. Also, the effect of temperature rise on the removal efficiency is investigated. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

12.
The gas-solid mass transfer in circulating fluidized bed (CFB) riser flow is both structure-dependent and dynamic in nature. Recent progress in multiscale computational fluid dynamics (CFD) allows fresh insight into the dynamic flow structure, yet its influence on the mass transfer remains to be settled. To this end, a multiscale mass transfer model is established in this paper based on the extended framework of the energy-minimization multiscale (EMMS) model. The relevant algorithm named EMMS/mass is proposed for CFD-coupled mass transfer computation. Two testing cases accounting for sublimation of naphthalene and decomposition of ozone, respectively, are presented to demonstrate the characters of the model. It is shown that structural consideration can have significant effects on the model prediction. The normally used Reynolds number is not adequate to characterize these effects, while the combination of gas velocity and solids flux seems to capture the structural effects and allows to explain the variation of Sherwood number reported for CFB risers in the literature. Sub-grid coupling of this multiscale mass transfer model and CFD approach can be expected to provide a promising tool to probe the dynamic and structure-dependent nature of mass transfer in CFB risers.  相似文献   

13.
The fluidization velocity and mean particle size were selected to be numerically investigated pertaining to their effects on the gas–particle circulation pattern within a fluidized bed granulator by three-dimensional computational fluid dynamics (CFD) simulation applying an Eulerian–Eulerian two-fluid model. The CFD simulations were designed by full factorial design method and the developed CFD model was experimentally validated. The fluidization process was proved to reach a quasi-steady state. The gas–particle circulation pattern and particle concentration distribution were analyzed based on fluidization velocity and mean particle size. A mathematical model was developed to provide guidance on how to change fluidization level during one experiment.  相似文献   

14.
Flow behavior of gas and solids is simulated in combination the gas-solid two-fluid model with a cluster structure-dependent (CSD) drag coefficient model. The dispersed phase is modeled by a Eulerian approach based upon the kinetic theory of granular flow (KTGF) including models for describing the dispersed phase interactions with the continuous phase. The drag forces of gas-solid phases are predicted from the local structure parameters of the dense and dilute phases based on the minimization of the energy consumed by heterogeneous drag. The cluster structure-dependent (CSD) drag coefficients are incorporated into the two-fluid model to simulate flow behavior of gas and particles in a riser. Simulation results indicate that the dynamic formation and dissolution of clusters can be captured with the cluster structure-dependent drag coefficient model. Simulated solid velocity and concentration of particles profiles are in reasonable agreement with experimental results.  相似文献   

15.
    
Computational fluid dynamics (CFD) modeling of the catalytic ozone decomposition reaction in a circulating fluidized‐bed (CFB) riser, using iron‐impregnated fluid catalytic cracking particles as catalyst, is carried out. The catalytic reaction is defined as a one‐step reaction, and the reaction equation is modified by with respect to the particle surface area, Ap, and an empirical coefficient. The Eularian‐Eularian method with the kinetic theory of granular flow is used to solve the gas‐solids two‐phase flow in the CFB riser. The simulation results are compared with experimental data, and the reaction rate is modified by using an empirical coefficient, to provide better simulation results than the original reaction rate. Moreover, the particle size has great effects on the reaction rate. The generality of the CFD model is further validated under different operating conditions of the riser.  相似文献   

16.
In this study, numerical modeling of particle fluidization behaviors in a rotating fluidized bed (RFB) was conducted. The proposed numerical model was based on a DEM (Discrete Element Method)-CFD (Computational Fluid Dynamics) coupling model. Fluid motion was calculated two-dimensionally by solving the local averaged basic equations. Particle motion was calculated two-dimensionally by the DEM. Calculation of fluid motion by the CFD and particle motion by the DEM were simultaneously conducted in the present model. Geldart group B particles (diameter and particle density were 0.5 mm and 918 kg/m3, respectively) were used for both calculation and experiment. First of all, visualization of particle fluidization behaviors in a RFB was conducted. The calculated particle fluidization behaviors by our proposed numerical model, such as the formation, growth and eruption of bubble and particle circulation, showed good agreement with the actual fluidization behaviors, which were observed by a high-speed video camera. The estimated results of the minimum fluidization velocity (Umf) and the bed pressure drop at fluidization condition (ΔPf) by our proposed model and other available analytical models in literatures were also compared with the experimental results. It was found that our proposed model based on the DEM-CFD coupling model could predict the Umf and ΔPf with a high accuracy because our model precisely considered the local downward gravitational effect, while the other analytical models overpredicted the ΔPf due to ignoring the gravitational effect.  相似文献   

17.
A gas-solid two-fluid model with the second-order moment method is presented to close the set of equations applied to fluidization. With the kinetic theory of granular flow, transport equations for the velocity moments are derived for the particle phase. Closure equations for the third-order moments of velocity and for the fluid-particle velocity correlation are presented. The former is based on a modified model with the contribution of the increase of the binary collision probability, and the latter uses an algebraic model proposed by Koch and Sangani [1999. Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical simulations. Journal of Fluid Mechanics 400, 229-263]. Boundary conditions for the set of equations describing flow of particles proposed by Strumendo and Canu [2002. Method of moments for the dilute granular flow of inelastic spheres. Physical Review E 66, 041304/1-041304/20] are modified with the consideration of the momentum exchange by collisions between the wall and particles. Flow behavior of gas and particles is performed by means of gas-solid two-fluid model with the second-order moment model of particles in the bubbling fluidized bed. The distributions of velocity and moments of particles are predicted in the bubbling fluidized bed. Predictions are compared with experimental data measured by Muller et al. [2008. Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations. Powder Technology 184, 241-253] and Yuu et al. [2000. Numerical simulation of air and particle motions in bubbling fluidized bed of small particles. Powder Technology 110, 158-168]. in the bubbling fluidized beds. The simulated second-order moment in the vertical direction is 1.1-2.5 [Muller, C.R., Holland, D.J., Sedeman, A.J., Scott, S.A., Dennis, J.S., Gladden, L.F., 2008. Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations. Powder Technology 184, 241-253] and 1.1-4.0 [Yuu, S., Umekage, T., Johno, Y., 2000. Numerical simulation of air and particle motions in bubbling fluidized bed of small particles. Powder Technology 110, 158-168] times larger than that in the lateral direction because of higher velocity fluctuations for particles in the bubble fluidized bed. The bubblelike Reynolds normal stresses per unit bulk density used by Gidaspow et al. [2004. Hydrodynamics of fluidization using kinetic theory: an emerging paradigm 2002 Flour-Daniel lecture. Powder Technology 148, 123-141.] are computed from the simulated hydrodynamic velocities. The predictions are in agreement with experimental second-order moments measured by Muller et al. [2008. Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations. Powder Technology 184, 241-253] and fluctuating velocity of particles measured by Yuu et al. [2000. Numerical simulation of air and particle motions in bubbling fluidized bed of small particles. Powder Technology 110, 158-168].  相似文献   

18.
Flow behavior of gas and particles is performed by means of gas-solid two-fluid model with the second-order moment model of particles in the bubbling fluidized bed. The distributions of velocity and moments of particles are predicted in the bubbling fluidized beds. Predictions are compared with experimental data measured by Jung et al. (2005) in a bubbling fluidized bed and Patil et al. (2005) experiments in a bubbling fluidized bed with a jet. The simulated second-order moment in the vertical direction is on average 1.5-2.3 times larger than that in the lateral direction in the bubbling fluidized bed (Jung et al., 2005). For a bubbling fluidized bed with a jet, the ratio of normal second-order moment in the vertical direction to in the lateral direction is in the range of 0.5-2.5 (Patil et al., 2005). The bubblelike Reynolds normal stresses per unit bulk density used by Gidaspow et al. (2002) are computed from the simulated hydrodynamic velocities. The simulated bubblelike Reynolds normal stresses in the vertical direction is on average 4.5-6.0 times larger than that in the lateral direction in the bubbling fluidized bed (Jung et al., 2005). The predictions are in agreement with experimental second-order moments measured by Jung et al. (2005) and porosity measured by Patil et al. (2005).  相似文献   

19.
通过实验和CFD模拟研究了反应器内气含率和局部阻力系数与操作参数和结构参数的关系. 结果表明,气含率随进气速率Ugr增大而增大,局部阻力系数随反应器升、降流区截面积比Ar/Ad增大而减小,随导流筒直径与导流筒距反应器底高度之比d/h增大而增大,由此建立了升、降流区气含率和导流筒底端局部阻力系数关联式. 在此基础上,采用降流区流体速度模型,研究了局部阻力与沿程阻力对降流区速度的影响,并实验测试不同操作和结构条件下降流区的流体速度. 模型计算与实测速度对比分析表明,根据所建局部阻力系数关联式并考虑沿程阻力影响,可获得与实测结果吻合较好的降流区速度. Ugr取最大值2.29 m/s时,降流区流体速度最大可达0.32 m/s,且Ar/Ad取最大值1.61、d/h取最小值1.75时反应器中流体循环更好.  相似文献   

20.
Flow behavior of gas and particles is simulated in a 2-D chemical-looping combustion (CLC) process with two interconnected fluidized beds. A Eulerian continuum two-fluid model is applied for both the gas phase and the solid phase. Gas turbulence is modeled by using a k-ε turbulent model. The kinetic stress is modeled using the kinetic theory of granular flow, while the friction stress is from the combination of the normal frictional stress model proposed by Johnson and Jackson (1987) and the frictional shear viscosity model proposed by Schaeffer (1987) to account for strain rate fluctuations and slow relaxation of the assembly to the yield surface. Instantaneous and local velocity, concentration of particles and granular temperature are obtained. Predicted time-averaged particle concentrations and velocities reflect the classical core-annular flow structure in the air reactor. Flow behavior of bubbles is predicted in the fuel reactor and pot-seal. Computed leakage qualitatively agrees with experimental data in the fuel reactor and pot-seal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号