首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为满足多样化能源需求并提高能源网络的可靠性,研究多能源系统优化管理和混合潮流问题.针对多能源的网络约束及其耦合特性,构建整合分布式发电、热电联产、电力网络和区域供热网络的热-电互联综合能源系统模型.基于梯形模糊隶属函数构建模糊化软约束,量化电力网络节点电压和区域供热网络节点供给温度的技术不满意度.考虑系统的经济运行和网络节点的能源供给质量,提出一种计及混合潮流约束的热-电互联综合能源系统多目标优化调度策略,以最小化运行成本和网络节点状态变量的技术不满意度.采用epsilon约束算法精确求解该多目标优化问题的Pareto前沿.算例分析结果表明,所构建的模型和提出的算法可以有效提高系统能源供给质量和优化决策的准确性.研究成果进一步体现了所提出的多目标优化方案在兼顾经济性、能源供给质量以及复杂的运行约束,保证系统经济稳定运行等方面的效益.  相似文献   

2.
季颖  王建辉 《控制与决策》2022,37(7):1675-1684
提出一种基于深度强化学习的微电网在线优化调度策略.针对可再生能源的随机性及复杂的潮流约束对微电网经济安全运行带来的挑战,以成本最小为目标,考虑微电网运行状态及调度动作的约束,将微电网在线调度问题建模为一个约束马尔可夫决策过程.为避免求解复杂的非线性潮流优化、降低对高精度预测信息及系统模型的依赖,设计一个卷积神经网络结构学习最优的调度策略.所提出的神经网络结构可以从微电网原始观测数据中提取高质量的特征,并基于提取到的特征直接产生调度决策.为了确保该神经网络产生的调度决策能够满足复杂的网络潮流约束,结合拉格朗日乘子法与soft actor-critic,提出一种新的深度强化学习算法来训练该神经网络.最后,为验证所提出方法的有效性,利用真实的电力系统数据进行仿真.仿真结果表明,所提出的在线优化调度方法可以有效地从数据中学习到满足潮流约束且具有成本效益的调度策略,降低随机性对微电网运行的影响.  相似文献   

3.
In this paper, a challenging power system problem of effectively scheduling generating units for maintenance is presented and solved. The problem of generator maintenance scheduling (GMS) is solved in order to generate optimal preventive maintenance schedules of generators that guarantee improved economic benefits and reliable operation of a power system, subject to satisfying system load demand, allowable maintenance window, and crew and resource constraints. A multiple swarm concept is introduced for the modified discrete particle swarm optimization (MDPSO) algorithm to form a robust algorithm for solving the GMS problem. This algorithm is referred to by the authors as multiple swarms-modified particle swarm optimization (MS-MDPSO). The performance and effectiveness of the MS-MDPSO algorithm in solving the GMS problem is illustrated and compared with the MDPSO algorithm on two power systems, the 21-unit test system and 49-unit Nigerian hydrothermal power system. The GMS of the two power systems are considered and the results presented shows great potential for utility application in their area control centers for effective energy management, short and long term generation scheduling, system planning and operation.  相似文献   

4.
This paper presents a real coded chemical reaction based (RCCRO) algorithm to solve the short-term hydrothermal scheduling (STHS) problem. Hydrothermal system is highly complex and related with every problem variables in a nonlinear way. The objective of the hydro thermal scheduling is to determine the optimal hourly schedule of power generation for different hydrothermal power system for certain intervals of time such that cost of power generation is minimum. Chemical reaction optimization mimics the interactions of molecules in term of chemical reaction to reach a low energy stable state. A real coded version of chemical reaction optimization, known as real-coded chemical reaction optimization (RCCRO) is considered here. To check the effectiveness of the RCCRO, 3 different test systems are considered and mathematical remodeling of the algorithm is done to make it suitable for solving short-term hydrothermal scheduling problem. Simulation results confirm that the proposed approach outperforms several other existing optimization techniques in terms quality of solution obtained and computational efficiency. Results also establish the robustness of the proposed methodology to solve STHS problems.  相似文献   

5.
This research investigates the production scheduling problems under maximum power consumption constraints. Probabilistic models are developed to model dispatching-dependent and stochastic machine energy consumption. A multi-objective scheduling algorithm called the energy-aware scheduling optimization method is proposed in this study to enhance both production and energy efficiency. The explicit consideration of the probabilistic energy consumption constraint and the following factors makes this work distinct from other existing studies in the literature: 1) dispatching-dependent energy consumption of machines, 2) stochastic energy consumption of machines, 3) parallel machines with different production rates and energy consumption pattern, and 4) maximum power consumption constraints. The proposed three-stage algorithm can quickly generate near-optimal solutions and outperforms other algorithms in terms of energy efficiency, makespan, and computation time. While minimizing the total energy consumption in the first and second stages, the proposed algorithm generates a detailed production schedule under the probabilistic constraint of peak energy consumption in the third stage. Numerical results show the superiority of the scheduling solution with regard to quality and computational time in real problems instances from manufacturing industry. While the scheduling solution is optimal in total energy consumption, the makespan is within 0.6 % of the optimal on average.  相似文献   

6.
为探究含电子电力变压器的电力系统最优潮流问题,在分析电子电力变压器简化模型、最优潮流的控制变量以及约束条件的基础上,建立了综合考虑经济因素和电压稳定性的含电子电力变压器的多目标最优潮流模型。模型中将减少发电成本和提高负荷裕度指标作为目标函数,考虑了电子电力变压器灵活的有功无功调节能力、有载调压变压器的电压调节能力、可调度负荷及可调无功电源的有功无功调节能力,提出使用基于遗传算法和内点算法的混合算法对最优潮流模型进行求解,算法的主要思想是以遗传算法为框架,对离散变量进行优化,在遗传算法的每一次迭代过程中,采用内点算法对每个体进行连续变量的优化和适应度评估。基于IEEE-14节点算例,分别进行了基于混合算法和基于内点法的最优潮流计算,计算结果验证了文章所提模型的合理性和算法的有效性。  相似文献   

7.
为了有效地解决水火电力系统资源短期优化调度问题,提出了一种基于混沌粒子群算法的调度方案。设计了水火电力系统资源调度问题的数学模型,给出了混沌粒子群调度算法的框架,通过引入最优粒子的混沌搜索机制、优势粒子和劣势粒子的权重自适应调节机制,从而使算法具有动态自适应性,能够较容易地跳出局部最优。实验结果表明,本算法方案能有效解决水火发电资源调度问题,具有较好的应用价值。  相似文献   

8.
为了有效地解决水火电力系统资源短期优化调度问题,提出了一种基于差分进化粒子群的调度算法。设计了水火电力系统资源调度问题的数学模型,给出了差分进化粒子群优化算法的框架,通过PSO种群和DE种群之间的信息交流机制以寻求全局最优位置,从而使算法具有动态自适应性,能够较容易地跳出局部最优。实验结果表明,该算法能有效解决水火发电资源调度问题,具有较好的应用价值。  相似文献   

9.
Optimal active–reactive power dispatch problems (OARPD) are non-convex and highly nonlinear complex optimization problems. Typically, such problems are expensive in terms of computational time and cost due to the load variations over the scheduling period. The conventional constraint-based solvers that are generally used to tackle such problems require a considerable high budget and may not provide high quality solutions. In the last decade, complexity of OARPD has further increased due to the incorporation of renewable energy sources such as: wind, solar and small-hydro generators. More specifically, the incorporation of renewable sources introduces uncertainty in generation on top of the load variations in conventional OARPD, making the problem more complicated. Recently, Differential Evolution (DE) is viewed as an excellent algorithm to solve OARPD problems, due to its effectiveness to optimize the objective function which is subject to many operational constraints. A new efficient Differential Evolution algorithm, denoted as DEa-AR, is propounded to solve the contemporary stochastic optimal power flow OARPD problems considering the renewable generators. DEa-AR uses arithmetic recombination crossover and adapts the scaling factor based on Laplace distribution. In addition, an efficient archive strategy that acts as a corresponding image of the population and stores the inferior individuals for later use, is also incorporated. The target behind using this strategy is to consider the information of inferior individuals as a direction toward finding new good solutions. The IEEE 57-bus system is used to evaluate the OARPD problems with different stochastic scenarios based on different probability distributions employed to model parameters of renewable energy sources. The performance of the proposed work is compared with other state-of-the-art algorithms. Simulation results indicate that the proposed technique can solve the OARPD problems with renewable sources effectively and can provide high quality solutions. The proposed algorithm is ranked the first with a Friedman rank equals to 1.8333 with a clear statistical significant difference compared with the most recent studies on the used problems.  相似文献   

10.
We consider the problem of scheduling jobs on two parallel identical machines where an optimal schedule is defined as one that gives the smallest makespan (the completion time of the last job) among the set of schedules with optimal total flowtime (the sum of the completion times of all jobs). We propose an algorithm to determine optimal schedules for the problem, and describe a modified multifit algorithm to find an approximate solution to the problem in polynomial computational time. Results of a computational study to compare the performance of the proposed algorithms with a known heuristic shows that the proposed heuristic and optimization algorithms are quite effective and efficient in solving the problem.Scope and purposeMultiple objective optimization problems are quite common in practice. However, while solving scheduling problems, optimization algorithms often consider only a single objective function. Consideration of multiple objectives makes even the simplest multi-machine scheduling problems NP-hard. Therefore, enumerative optimization techniques and heuristic solution procedures are required to solve multi-objective scheduling problems. This paper illustrates the development of an optimization algorithm and polynomially bounded heuristic solution procedures for the scheduling jobs on two identical parallel machines to hierarchically minimize the makespan subject to the optimality of the total flowtime.  相似文献   

11.
开销敏感的多处理器最优节能实时调度算法   总被引:1,自引:0,他引:1  
嵌入式多处理器系统的能耗问题变得日益重要,如何减少能耗同时满足实时约束成为多处理器系统节能实时调度中的一个重要问题.目前绝大多数研究基于关键速度降低处理器的频率以减少动态能耗,采用关闭处理器的方法减少静态能耗.虽然这种方法可以实现节能,但是不能保证最小化能耗.而现有最优的节能实时调度未考虑处理器状态切换的时间和能量开销,因此在切换开销不可忽视的实际平台中不再是最优的.文中针对具有独立动态电压频率调节和动态功耗管理功能的多处理器系统,考虑处理器切换开销,提出一种基于帧任务模型的最优节能实时调度算法.该算法根据关键速度来判断系统负载情况,确定具有最低能耗值的活跃处理器个数,然后根据状态切换开销来确定最优调度序列.该算法允许实时任务在处理器之间任意迁移,计算复杂度小,易于实现.数学分析证明了该算法的最优性.  相似文献   

12.
In this paper, steel-making continuous casting (SCC) scheduling problem (SCCSP) is investigated. This problem is a specific case of hybrid flow shop scheduling problem accompanied by technological constraints of steel-making. Since classic optimization methods fail to obtain an optimal solution for this problem over a suitable time, a novel iterative algorithm is developed. The proposed algorithm, named HANO, is based on a combination of ant colony optimization (ACO) and non-linear optimization methods.  相似文献   

13.
由于无人机(Unmanned aerial vehicle,UAV)机动性好且部署简单,基于无人机中继的传输技术受到了广泛关注。功率作为通信系统的重要资源,其分配问题直接影响各条链路的性能和整个通信系统的能量效率。本文以莱斯衰落信道为背景,提出了一种在系统能效准则下的无人机中继通信系统的功率分配算法。首先在双跳放大转发(Amplify-and-forward,AF)中继传输模型的基础上建立功率分配的优化模型,将功率分配问题转化为求解最大系统能效的优化问题。在最优功率分配的求解过程中,先固定发射信号功率,获得波束形成优化方案;然后通过大信噪比区间近似,将非凸优化问题转化为凸优化问题;最后利用KKT(Karush-Kuhn-Tucker)条件,计算得出功率分配方案的闭式解。仿真实验表明,本文算法相对于迭代算法降低了算法复杂度。  相似文献   

14.
Solution of optimal power flow (OPF) problem aims to optimize a selected objective function such as fuel cost, active power loss, total voltage deviation (TVD) etc. via optimal adjustment of the power system control variables while at the same time satisfying various equality and inequality constraints. In the present work, a particle swarm optimization with an aging leader and challengers (ALC-PSO) is applied for the solution of the OPF problem of power systems. The proposed approach is examined and tested on modified IEEE 30-bus and IEEE 118-bus test power system with different objectives that reflect minimization of fuel cost or active power loss or TVD. The simulation results demonstrate the effectiveness of the proposed approach compared with other evolutionary optimization techniques surfaced in recent state-of-the-art literature. Statistical analysis, presented in this paper, indicates the robustness of the proposed ALC-PSO algorithm.  相似文献   

15.
针对实际认知超密集网络场景中认知无线电存在非完美频谱感知的情况,提出了一种基于非完美频谱感知的资源分配方案,目标是在考虑跨/同层干扰约束、保障用户服务质量下,最大化非完美频谱感知下认知超密集网络中次级网络的能效。为此,依据网络模型构建能效优化问题,其为混合整数非凸规划问题,先通过分时共享松弛法和丁克尔巴赫法将其转换成等价的凸优化问题,再使用拉格朗日对偶法求其最优解,以此获得最优能效时的子信道和功率分配策略。基于此,提出了一种迭代的子信道和功率分配算法;为权衡计算复杂度,还提出了一种实用的子信道和功率分配算法。仿真结果表明,所提算法都有效地提升了网络能效。  相似文献   

16.
We consider a hybrid TDMA/CDMA wireless sensor network (WSN) and quantitatively investigate the energy efficiency obtained by combining adaptive power/rate control with time-domain scheduling. The energy efficiency improvement is carried out with respect to interfering-cluster scheduling, intra-cluster node scheduling, and transmission powers and times (durations) control (PTC) for individual nodes. The interfering-cluster scheduling is formulated as a vertex-coloring problem, which can be solved efficiently using existing numerical algorithms in graph theory. For the node scheduling problem, we present a heuristic algorithm, which iteratively searches for the best schedule in such a way that the energy consumption keeps decreasing after every iteration. Compared with the exponentially complicated exhaustive search algorithm, this heuristic algorithm has polynomial computing complexity and can provide optimal solutions in the most simulated cases. For the transmission power/time control, two simplified PTC schemes, namely, PTC-UT and PTC-USG, are proposed and studied based on our previous optimization work PTC-IPT. We show that PTC-UT and PTC-USG provide comparable energy efficiency to PTC-IPT at only half of its complexity. Numerical examples are used to validate our findings.  相似文献   

17.
The ineffective utilization of power resources has attracted much attention in current years. This paper proposes a real-time distributed load scheduling algorithm considering constraints of power supply. Firstly, an objective function is designed based on the constraint, and a base load forecasting model is established when aggregating renewable generation and non-deferrable load into a power system, which aims to transform the problem of deferrable loads scheduling into a distributed optimal control problem. Then, to optimize the objective function, a real-time scheduling algorithm is presented to solve the proposed control problem. At every time step, the purpose is to minimize the variance of differences between power supply and aggregate load, which can thus ensure the effective utilization of power resources. Finally, simulation examples are provided to illustrate the effectiveness of the proposed algorithm.   相似文献   

18.
Flow shop scheduling problem consists of scheduling given jobs with same order at all machines. The job can be processed on at most one machine; meanwhile one machine can process at most one job. The most common objective for this problem is makespan. However, multi-objective approach for scheduling to reduce the total scheduling cost is important. Hence, in this study, we consider the flow shop scheduling problem with multi-objectives of makespan, total flow time and total machine idle time. Ant colony optimization (ACO) algorithm is proposed to solve this problem which is known as NP-hard type. The proposed algorithm is compared with solution performance obtained by the existing multi-objective heuristics. As a result, computational results show that proposed algorithm is more effective and better than other methods compared.  相似文献   

19.
Mobile agent planning (MAP) is increasingly viewed as an important technique of information retrieval systems to provide location aware services of minimum cost in mobile computing environment. Although Hopfield-Tank neural network has been proposed for solving the traveling salesperson problem, little attention has been paid to the time constraints on resource validity for optimizing the cost of the mobile agent. Consequently, we modify Hopfield-Tank neural network and design a new energy function to not only cope with the dynamic temporal features of the computing environment, in particular the server performance and network latency when scheduling mobile agents, but also satisfy the location-based constraints such as the starting and end node of the routing sequence must be the home site of the traveling mobile agent. In addition, the energy function is reformulated into a Lyapunov function to guarantee the convergent stable state and existence of the valid solution. Moreover, the objective function is derived to estimate the completion time of the valid solutions and predict the optimal routing path. Simulations study was conducted to evaluate the proposed model and algorithm for different time variables and various coefficient values of the energy function. The experimental results quantitatively demonstrate the computational power and speed of the proposed model by producing solutions that are very close to the minimum costs of the location-based and time-constrained distributed MAP problem rapidly. The spatio-temporal technique proposed in this work is an innovative approach in providing knowledge applicable to improving the effectiveness of solving optimization problems.  相似文献   

20.
The resource saving dispatching aims at finding the optimal combination of powers produced by power generating units that minimizes the total costs subject to given constraints. A metaheuristic swarm flow algorithm is proposed. Results of the comparative analysis of the efficiency of this algorithm on benchmark problems are presented. The comparison was performed with the particle swarm optimization, genetic, and biogeography-based optimization algorithms using systems consisting of 6 and 20 power generating units as examples. The flow algorithm converges to the optimal solution using less computational resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号