首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of quenching temperature including different thermal histories on mechanical, physical, and thermal properties of pigmented polycarbonate (PC/TiO2) were investigated. Tensile test, Izod impact strength and heat distortion temperature (HDT) were performed on specimens of 3 mm thickness. Pigment content and quenching temperature are two key factors that affect the properties of the materials. A higher content of pigments results in an increase of modulus of elasticity and a decrease of unotched and notched Izod impact strength, as well as elongation at break. A maximum of yield stress and HDT is obtained at 3% of TiO2, which was considered as the optimum level of pigment. An additional second quenching at 40°C has allowed to improve Izod impact strength and elongation at break of specimens with 3% of TiO2; whereas modulus of elasticity, density, yield stress, and HDT were minimum at this quenching temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
The effect of different thermal treatments on the mechanical and thermal properties of polycarbonate was investigated. The first quenching procedure which involves the quench of the samples from the melt state to different temperatures allowed improving impact strength and elongation at break for a quenching temperature of 0°C. A second quenching procedure, corresponding to specimens heated again at 160°C (Tg + 15°C) and quenched a second time, showed a better enhancement of the impact strength and elongation at break to the detriment of other properties such as elastic modulus, density, yield stress, and heat distortion temperature, for a quenching temperature of 40°C. This effect was associated to the existence of a relaxation mode around 35°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Optical properties of polycarbonate plasticized by pentaerythritol tris(1,1,2,3,3,3‐hexafluoropropyl) ether (HFP), diheptadecyl‐o‐phthalate and pentaerythrityl tetrabenzoate (TBP) have been determined at wavelengths from 300 to 700 nm. X‐ray diffraction analysis, which was used to examine the polymer structure, showed that all the plasticized systems were amorphous. HFP and, especially, TBP impeded crystallization of the polymer. Plasticized polycarbonate films remained transparent over long periods of time even if they were heated at a temperature higher than the polymer glass transition temperature. © 2003 Society of Chemical Industry  相似文献   

4.
Biodegradable foams were successfully prepared from calcium carbonate reinforced poly(propylene carbonate) (PPC/CaCO3) composites using chemical foaming agents. The incorporation of inexpensive CaCO3 into PPC provided a practical way to produce completely biodegradable and cost‐competitive composite foams with densities ranging from 0.05 to 0.93 g/cm3. The effects of foaming temperature, foaming time and CaCO3 content on the fraction void, cell structure and compression property of the composite foams were investigated. We found that the fraction void was strongly dependent on the foaming conditions. Morphological examination of PPC/CaCO3 composite foams revealed that the average cell size increased with increasing both the foaming temperature and the foaming time, whereas the cell density decreased with these increases. Nevertheless, the CaCO3 content showed opposite changing tendency for the average cell size and the cell density because of the heterogeneous nucleation. Finally the introduction of CaCO3 enhanced the compressive strength of the composite foams dramatically, which was associated with well‐developed cell morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5240–5247, 2006  相似文献   

5.
The effects of interchange reactions on the solid‐state structure and mechanical properties of a 70/30 poly(ethylene terephthalate) (PET)/bisphenol A polycarbonate (PC) blend were studied. Increasing reaction levels were obtained by means of lower screw speeds in the extruder. The progressive production of copolymers with the reaction time increased the amount of each component in the other phase. The concomitant degradation of PET led to a maximum in ductility and tensile and impact strengths whereas the modulus of elasticity and the yield stress were held constant. The maximum in properties took place at a reaction time close to 2.6 min; at longer reaction times the negative effect of degradation began to overcome the positive effect of the interchange reactions. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 121–127, 2001  相似文献   

6.
Different aliphatic waterborne polyurethane dispersions (PUDs) were synthesized by using different polyols (Mw: 1000 Da) of randomly copolymerized polycarbonate diols with hexamethylene and pentamethylene (C6–C5), tetramethylene (C6–C4) and trimethylene (C6–C3); these copolymers differed in the length of the methylene groups and the structural regularity due to the combination of even and odd units. Brookfield viscosity, extent of particle crowding and broadening of the particle size distribution of the PUD synthesized with C6–C4 polyol followed a different trend than for the other because of the even number of methylene units in the polyol. The PUDs showed monomodal particle size distribution which was narrower in C6–C4 (i.e. the dispersion with higher structural regularity) and the mean particle size decreased by decreasing the length of the methylene unit of the copolymer.The properties of the polyurethanes were affected by the phase separation between the hard and soft segments, the more regular packing of even methylene units in the copolymer and the crystallized polar segments due to carbonate groups. Thus, the glass transition values of the soft segments in the polyurethanes were similar because of the more regular packing of even methylene units in C6–C4 polyol and the crystallized segments produced by interactions of carbonate groups. PU(C6–C5) and PU(C6–C4) showed similar degree of phase separation, the higher degree of phase separation corresponded to PU(C6–C3). Furthermore, the crystallinity of the polyurethanes increased with decreasing the number of methylene units in the polyol, but PU(C6–C4) was the most crystalline because of the more regularly packed even methylene groups in the polyol chain. The thermal stability of the polyurethanes increased from PU(C6–C5) to PU(C6–C3) because the more net interactions between the carbonate groups in the soft segments. The lower was the number of methylene groups between carbonate units in the copolymer, the higher was the elastic modulus of the polyurethanes. The tensile strength and elongation-at-break values of the polyurethanes increased by increasing the number of methylene groups between carbonate units in the copolymer. Finally, the peel strength was maximal in the joint made with PU(C6–C5) and the shear strength was the highest in the joint made with PU(C6–C3), in agreement with the variation of the viscoelastic and mechanical properties of the polyurethanes.  相似文献   

7.
The study investigates the thermo-mechanical properties of isotactic polypropylene (iPP) hybrid composites in reference to various amounts of particle- and fiber-shaped inorganic fillers. Three grades of hybrid composites were prepared as a function of filler amount: 5, 10, and 20 wt% and different ratios of glass fiber (GF) and calcium carbonate (CaCO3). The main objective is to describe the relationship between the hybridization efficiency and mechanical performance of polypropylene-based composites. The analysis of the thermo-mechanical properties of the composites shows that both the total amount of the filler and the ratio of GF and CaCO3 clearly influence the properties of the composites. Hybrid composites with the highest amount of the GF display improved thermo-mechanical stability. The presence of well-dispersed CaCO3 in the composites was found to improve elongation at break and Vicat softening temperature values. Even though it is glass fiber, which shows higher filler effectiveness and visibly reinforces the composite samples, causing an increase in tensile strength or reinforcing efficiency, replacing up to 50% of this filler with calcium carbonate does not result in a considerable deterioration of the properties of the material.  相似文献   

8.
Maged A. Osman 《Polymer》2004,45(4):1177-1183
Calcium carbonate fillers are usually coated with stearic acid to reduce their surface energy and improve their dispersion in polymers. Commercial products are often over-coated and contain an excess of surfactant. It was found that stearic acid linearly increases the modulus and yield stress of LDPE but reduces its tensile strength, yield strain, and ultimate elongation. The influence of surfactant excess on the tensile properties of low-density polyethylene (LDPE)-CaCO3 composites was investigated. Compounds of LDPE and optimally coated filler or with excess surfactant were prepared and their properties compared. CaCO3 increased the stiffness and yield stress of the polymer but reduced all its other tensile properties. Over-coating the filler did not lead to linear accumulation of the effects of filler and stearic acid on the polymer matrix. In fact, surfactant excess amplifies the reinforcing effect on the stiffness but reduces all other mechanical properties of the composite. Calcium stearate, which is sometimes used as acid scavenger, lubricant or processing aid, has the same effect on the polymer properties as stearic acid, but to a smaller extent. It is concluded that it is most advantageous to coat the filler with the optimal amount of surfactant necessary to cover its surface with an organic monolayer unless the influence of excessive coating is required for a certain application. Care must also be taken in interpreting some of the published results, where the quality of the filler coating was not investigated.  相似文献   

9.
《Ceramics International》2020,46(1):243-250
Highly porous (macroporosity 76–90%) bioceramics containing interconnected pores (>100 μm) with compressive strength between 0.54 and 0.32 MPa were prepared by polyurethane foam replica method. Effect of following variables, i.e., calcium phosphate/anatase ratio (30/70, 50/50, 70/30 wt%) in the ceramic slurry, anatase particle size (15 nm, 180 nm), Ca/P molar ratio of calcium phosphate (1.67 and 1.50 for hydroxyapatite and apatitic-tricalcium phosphate (ap-TCP), respectively), on the bioceramics properties was investigated. Bioceramics prepared using anatase and hydroxyapatite consisted of three high-temperature crystalline phases - β-tricalcium phosphate (β-TCP), rutile and CaTiO3. In case of anatase and ap-TCP, two phases (β-TCP and rutile) were obtained. Interaction of anatase and hydroxyapatite during sintering caused formation of CaTiO3 at β-TCP and rutile grain boundaries thus contributing to a denser grain packing. Combination of ap-TCP and nanosized anatase facilitated decrease of grain sizes. Correlation was found between compressive strength and calcium phosphate precursor in the ceramic slurry.  相似文献   

10.
This work investigates the effect of polycarbonate (PC) and montmorillonite (MMT) content on the properties and morphology of epoxy resin (EP). Izod impact strength (IS), flexural strength and critical stress intensity factor (KC) were estimated as function of modifiers content. The values of IS and KC parameters increased by respectively 150% and 90% with the addition of 5 wt % PC. Hybrid compositions containing 1 wt % MMT and 5 wt % PC exhibited the best mechanical properties. Indeed, the addition of 1 wt % MMT to EP modified with 5 wt % PC caused enhancement of IS values by 100% in comparison with neat EP. SEM micrographs revealed that the enhancement mechanism of mechanical properties might be due to extensive yielding of EP associated with the formation of stratified elongated structures. Moreover, differential scanning calorimetry analysis revealed that the addition of nanoclay to EP resulted in a decrease of the glass transition temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
The photostability of polymeric systems can be extensively affected by the presence of dyes and pigments. Achromatic pigments such as carbon black are known as effective stabilizers for polymers, while pigments such as those based on metals oxides may accelerate photodegradation in polymers. Despite innumerous studies addressed to achromatic pigments, the effects and action mechanisms of chromatic pigments on polymer stability are not well established. In this work, an effective photostabilizer action on polycarbonate was verified by the incorporation of a red diazo type condensation pigment. This pigment was incorporated into polycarbonate in an extruder at a concentration of 1 wt %. Injection molded specimens of this material were submitted to photochemical aging following the recommendations of ASTM G‐53. The nonaged and aged specimens were characterized by mechanical testing, infrared spectroscopy, UV/visible absorption and fluorescence spectroscopies, and electron spin resonance. The absorption of the UV radiation by the pigment and subsequent quenching by the internal conversion energy process is the probable stabilization mechanism involved in this polymeric system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

12.
The influences of size and content of silicon dioxide (SiO2) nanoparticles on the morphological, optical, toughness, and thermal properties of polycarbonate (PC) were investigated. The PC nanocomposites were prepared using a twin-screw extruder followed by injection molding. The scanning electron microscope (SEM) micrographs displayed an adequate level of nano-SiO2 particle distribution within the PC matrix but still revealed some agglomerated particles. Upon increasing the content of nanoparticles, slightly larger agglomerates formed. These agglomerated particles caused a reduction in material transparency due to light loss via reflection and scattering. However, the incorporation of nano-SiO2 into the PC matrix greatly improved toughness properties and slightly increased glass-transition temperature (Tg), in conjunction with filler content (up to 4 vol %). This was particularly in the case with the smaller sized nano-SiO2, which not only significantly improved toughness but also enhanced optical properties of the PC nanocomposites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47634.  相似文献   

13.
《Ceramics International》2020,46(6):7170-7177
This paper introduce the formation of alumina matrix composites reinforced with multilayered graphene, graphene oxide and nickel-phosphorus coated multilayered graphene. The powder metallurgy technique followed by the Spark Plasma Sintering (SPS) method were utilized to fabricate the specimens. The influence of graphene-family material additions on microstructure was investigated, and correlated with measurements of mechanical properties. The emphasis of the research has been placed on the tribological performance conducted with the use of the ball-on-disc method under loads of 10 N and 30 N. Both the wear tracks of composites and the corresponding counterparts were carefully analysed, to evaluate the combined influence of mechanical properties and tribofilm formation on the measured wear rates. All results were compared to pure alumina as a reference specimen.  相似文献   

14.
高炜斌  张枝苗 《国外塑料》2009,27(10):32-37
双酚A型聚碳酸酯性能优异,应用广泛。但在户外使用时,由于光、一氧和湿度等环境因素的作用,导致聚碳酸酯力学强度和外观发生变化。为提高PC的抗老化性能,必须通过研究。充分认识聚碳酸酯的老化反应和老化进程。综述了近年来聚碳酸酯老化行为的研究,并提出存在的问题和今后研究的方向。  相似文献   

15.
A highly branched polystyrene (HBPS) was synthesized via the copolymerization of 4‐(chloromethyl) styrene with styrene using the self‐condensing atom transfer radical polymerization method. The addition of HBPS as a melt modifier for polycarbonate (PC) was attempted. Melt flow properties, mechanical properties, thermal properties and morphology of the blends were studied. The results showed that a significant drop in the blend viscosity occurs immediately on addition of HBPS. Impact strength, tensile strength and glass transition temperature (Tg) of all the blends have not been significantly reduced compared with those of pure PC. The TGA analyses showed that an initial weight loss temperature of all the blends is above 458 °C and slightly low compared with that of pure PC, but all the blends still have excellent thermal stability. Morphological studies using SEM showed that a two‐phase morphology is characteristic of all the blends, with more or less spherical droplets of the minor HBPS phase dispersed in the continuous PC phase. Copyright © 2006 Society of Chemical Industry  相似文献   

16.
Polycarbonate (PC) is a thermoplastic engineering plastic with excellent properties, and its excellent dielectric properties have broad application prospects in the field of electronics. In this paper, bisphenol Z (BPZ) and diphenyl carbonate (DPC) are used as raw materials to synthesize special polycarbonate (BPZ-PC) by melt transesterification. The effects of catalyst type, catalyst dosage, molar ratio of raw materials, transesterification reaction time and vacuum degree, polycondensation reaction temperature and time on the molecular weight of the product are investigated, and the optimal reaction conditions are obtained. The chemical structure of the product is verified by FTIR, 1H-NMR and 13C-NMR spectra tests. The thermal properties, mechanical properties, optical properties and dielectric properties of BPZ-PC are evaluated. Therefore, due to its excellent performance, BPZ-PC, a high-performance low-dielectric polycarbonate, can be widely used in high-frequency communication, microelectronics, and aerospace industries.  相似文献   

17.
《Ceramics International》2020,46(10):16151-16156
Silicon carbide (SiC) particles were utilized to improve the mechanical, thermal and anti-ablative properties of carbon/phenolic (C/Ph) composites. SiC–C/Ph composites were fabricated with different weight percentage of SiC by vacuum impregnation method. The mechanical and thermal properties were characterized by compression tests, thermal conductivity tests, and thermogravimetric analysis; meanwhile, ablation resistance was investigated using plasma wind tunnel tests and scanning electron microscopy. Experimental results showed that 5 wt% SiC modified C/Ph composites owned the optimum properties. Moreover, introducing SiC particles could result in an obvious decrease of compression strength, but an increase of thermal stability, thermal conductivity and anti-ablative performance. Notably, the ablation rate reached its the lowest point at 5% the SiC content in resin matrix composites.  相似文献   

18.
After‐hatching eggshell (AHES) nanobiofiller and nanocalcium carbonate (nano‐CA) were separately added to various elastomers, such as acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), and natural rubber (NR), in various amounts of 5, 10, and 15 phr. The effect of particle size and dispersion of such nanofillers on thermomechanical properties and curing characteristics were then investigated. The ultimate tensile properties of SBR and NR nanocomposites were improved to some extent when 5 phr of AHES nanofiller was added to the rubber compound compared to CA. In the case of NBR nanocompounds, however, the mechanical properties were seemingly comparable, irrespective of the type of nanofiller. This contradictive behavior could be attributed to the alteration of crosslink density due to particular filler–matrix interaction while using mineral and natural fillers. The results of the rheometric study revealed that using AHES rather than CA slightly increases the scorch time of all types of prepared nanocomposites, whereas a significant drop in the optimum curing time was seen for NBR nanocomposites containing AHES biofiller. Moreover, thermogravimetric analysis showed similar thermal stability for SBR nanocomposites containing AHES and CA fillers. Finer particle size of CA and higher porosity of AHES at high and low loading levels were respectively the main reasons for improvement of ultimate properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
利用流延薄膜挤出机将两种熔体流动速率(MFR)不同的聚碳酸酯(PC)流延成片,并制备双向拉伸PC(BOPC)薄膜,比较了BOPC薄膜成膜的难易及其性能。结果发现:纵、横向拉伸倍率为2.5×2.5时,BOPC薄膜的拉伸模量提高20.0%左右。具有高MFR的PC2407纵、横向拉伸倍率更大,为4.0×4.0。PC2407薄膜的冲击强度为PC3113薄膜的2倍多,当同种PC在拉伸倍率超过2.5×2.5时,薄膜冲击强度降低。PC2407与PC3113薄膜雾度均小于1.60%,随着拉伸倍率的增加而降低;透光率高于90.0%,随着拉伸倍率的增加而减小;有效光散射值较低。与原料相比,PC2407与PC3113薄膜的玻璃化转变温度下降,热分解温度为480.0℃左右。  相似文献   

20.
Thermal degradation of bisphenol A polycarbonate (PC) has been studied in nitrogen and air from room temperature to 900 °C by high-resolution thermogravimetry (TG) with a variable heating rate in response to changes in the sample's degradation rate. A three-step (in nitrogen) or four-step (in air) degradation process of the PC, which was hardly ever revealed by traditional TG, has been found. The initial thermal degradation temperature of the PC is higher in nitrogen than in air, but the three kinetic parameters (activation energy E, decomposition order n, frequency factor Z) of the major degradation process are slightly lower in nitrogen. The average E, n and lnZ values determined by three methods in nitrogen are 154 KJ mol−1, 0.8 and 21 min−1, respectively, which are almost the same as those calculated by traditional TG measurements. © 1999 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号