首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The molecular-level speciation of arsenic has been determined in a soil profile in the Massif Central near Auzon, France that was impacted by As-based pesticides by combining conventional techniques (XRD, selective chemical extractions) with X-ray absorption spectroscopy (XAS). The arsenic concentration is very high at the top (>7000 mg kg(-1)) and decreases rapidly downward to a few hundreds of milligrams per kilogram. A thin layer of schultenite (PbHAsO4), a lead arsenate commonly used as an insecticide until the middle of the 20th century, was found at 10 cm depth. Despite the occurrence of this As-bearing mineral, oxalate extraction indicated that more than 65% of the arsenic was released upon dissolution of amorphous iron oxides, suggesting a major association of arsenic with these phases within the soil profile. Since oxalate extraction cannot unambiguously distinguish among the various chemical forms of arsenic, these results were confirmed by a direct in situ determination of arsenic speciation using XAS analysis. XANES data indicate that arsenic occurs mainly as As(V) along the soil profile except for the topsoil sample where a minor amount (7%) of As(III) was detected. EXAFS spectra of soil samples were fit by linear combinations of model compounds spectra and by a shell-by-shell method. These procedures clearly confirmed that As(V) is mainly (at least 80 wt %) associated with amorphous Fe(III) oxides as coprecipitates within the soil profile. If any, the proportion of schultenite, which was evidenced by XRD in a separate thin white layer, does not account for more than 10 wt % of arsenic in soil samples. This study emphasizes the importance of iron oxides in restricting arsenic dispersal within soils following dissolution of primary As-bearing solids manufactured for use as pesticides and released into the soils.  相似文献   

2.
The arsenic (As) solid-state speciation (i.e., oxidation state, precipitates, and adsorption complexes) is one of the most important factors controlling dissolved As concentrations at As contaminated sites. In this case study, two representative subsurface samples (i.e., oxidized and semi-reduced sites) from former lead arsenate contaminated soils in the northeastern United States were chosen to investigate the effects of aging on As retention mechanisms using multiscale spectroscopic techniques. X-ray powder diffraction (XRD), synchrotron based microfocused (micro) XRD, in situ micro-synchrotron based X-ray fluorescence spectroscopy (SXRF), and micro-X-ray absorption near edge structure (XANES) spectroscopy were used to compliment the final bulk X-ray absorption spectroscopy (XAS) analyses. In the sample from an oxic area, As is predominantly (approximately 71%) present as As(V) adsorbed onto amorphous iron oxyhydroxides with a residue (approximately 29%) of an original contaminant, schultenite (PbHAsO4). Contrarily, there is no trace of schultenite in the sample from a semi-reduced area. Approximately 25% of the total As is present as adsorbed phases on amorphous iron oxyhydroxide and amorphous orpiment (As2S3). The rest of the fractions (approximately 46%) were identified as As(V)-Ca coprecipitates. This study shows that aging effects can significantly alter the original chemical constituent (schultenite) in soils, resulting in multi and site-specific As solid-state speciation. The variability in spatial and temporal scale may be important in assessing the environmental risk and in developing in situ remediation technologies.  相似文献   

3.
Because of the potentially high arsenic concentrations found in soils immediately adjacent to chromated copper arsenate (CCA)-treated wood structures and utility poles, CCA-contaminated soil ingestion may be a significant exposure route to arsenic for children. Therefore, a strong need exists to provide accurate data on oral relative bioavailability (RBA) of arsenic (in vivo or in vitro) in field-collected CCA-contaminated soils. The objectives of this study were (1) to assess arsenic bioaccessibility in contaminated soils collected near in-service CCA-treated utility poles, (2) to determine the influence of soil properties and arsenic fractionation on arsenic bioaccessibility, and (3) to estimate an average daily arsenic intake from incidental soil ingestion. Arsenic bioaccessibility (in vitro gastrointestinal (IVG) method) was determined on surface soil samples collected immediately adjacent to 12 CCA-treated utility poles after 18 months of service. Bioaccessible arsenic was also determined in 3 certified reference materials. Total arsenic concentrations in soils (<300 microm) varied from 37 +/- 2 to 251 +/- 12 mg/kg, irrespective of soil organic matter contentwith the major soil-bound arsenic species being As(V). Arsenic bioaccessibility ranged between 25.0 +/- 2.7 and 66.3 +/- 2.3% (mean value 40.7 +/- 14.9%). The mean value was in agreement with the in vivo arsenic RBA reported by Casteel et al. (2003) in soil near CCA-treated utility poles. Bioaccessible arsenic was positively correlated with total organic carbon content (r2 = 0.36, p < 0.05) and with water-soluble arsenic (2 = 0.51, p < 0.01), and was negatively correlated with clay content (r2 = 0.43, p < 0.05). Using conservative exposure parameters, the mean daily arsenic intake from incidental ingestion of contaminated soil near CCA-treated utility poles was 0.18 +/- 0.09 microg As kg(-1) d(-1). This arsenic intake appeared negligible compared to the daily intake of inorganic arsenic from water and food ingestion for children.  相似文献   

4.
Arsenic mobilization in soils is mainly controlled by sorption/desorption processes, but arsenic also may be coprecipitated with aluminum and/or iron in natural environments. Although coprecipitation of arsenic with aluminum and iron oxides is an effective treatment process for arsenic removal from drinking water, the nature and reactivity of aluminum- or iron-arsenic coprecipitates has received little attention. We studied the mineralogy, chemical composition, and surface properties of aluminum-arsenate coprecipitates, as well as the sorption of phosphate on and the loss of arsenate from these precipitates. Aluminum-arsenate coprecipitates were synthesized at pH 4.0, 7.0, or 10.0 and As/Al molar ratio (R) of 0, 0.01, or 0.1 and were aged 30 or 210 d at 50 degrees C. In the absence of arsenate, gibbsite (pH 4.0 or 7.0) and bayerite (pH 10.0) formed, whereas in the presence of arsenate, very poorly crystalline precipitates formed. Short-range ordered materials (mainly poorly crystalline boehmite) formed at pH 4.0 (R = 0.01 and 0.1), 7.0, and 10.0 (R= 0.1) and did not transform into Al(OH)3 polymorphs even after prolonged aging. The surface properties and chemical composition of the aluminum precipitates were affected by the initial pH, R, and aging. Chemical dissolution of the samples by 6 mol L(-1) HCl and 0.2 mol L(-1) oxalic acid/ oxalate solution indicated that arsenate was present mainly in the short-range ordered precipitates. The sorption of phosphate onto the precipitates was influenced by the nature of the samples and the amounts of arsenate present in the precipitates. Large amounts of phosphate partially replaced arsenate only from the samples formed at R = 0.1. The quantities of arsenate desorbed from these coprecipitates by phosphate increased with increasing phosphate concentration, reaction time, and precipitate age butwere always lessthan 30% of the amounts of arsenate present in the materials and were particularly low (<4%) from the sample prepared at pH 4.0. Arsenate appeared to be occluded within the network of short-range ordered materials and/or sorbed onto the external surfaces of the precipitates, but sorption on the external surfaces seemed to increase by increasing pH of sample preparation and aging. Furthermore, at pH 4.0 more than in neutral or alkaline systems the formation of aluminum arsenate precipitates seemed to be favored. Finally, we have observed that greater amounts of phosphate were sorbed on an aluminum-arsenate coprecipitate than on a preformed aluminum oxide equilibrated with arsenate under the same conditions (R = 0.1, pH 7.0). In contrast, the opposite occurred for arsenate desorption, which was attributed to the larger amounts of arsenate occluded in the coprecipitate.  相似文献   

5.
Adsorption-desorption of arsenic is the primary factor that impacts the bioavailability and mobility of arsenic in soils. To examine the characteristics of arsenate [As(V)] adsorption-desorption, kinetic batch experiments were carried out on three soils having different properties, followed by arsenic release using successive dilutions. Adsorption of As(V) was highly nonlinear, with a Freundlich reaction order N much less than 1 for Olivier loam, Sharkey clay, and Windsor sand. Adsorption of arsenate by all soils was strongly kinetic, where the rate of As(V) retention was rapid initially and was followed by gradual or somewhat slow retention behavior with increasing reaction time. Freundlich distribution coefficients and Langmuir adsorption maxima exhibited continued increase with reaction time for all soils. Desorption of As(V) was hysteretic in nature and is an indication of lack of equilibrium retention and/or irreversible or slowly reversible processes. A sequential extraction procedure provided evidence that a significant amount of As(V) was irreversibly adsorbed on all soils. A multireaction model (MRM) with nonlinear equilibrium and kinetic sorption successfully described the adsorption kinetics of As(V) for Olivier loam and Windsor sand. The model was also capable of predicting As(V) desorption kinetics for both soils. However, for Sharkey clay, which exhibited strongest affinity for arsenic, an additional irreversible reaction phase was required to predict As(V) desorption or release with time.  相似文献   

6.
Monosodium methanearsonate (MSMA) is frequently used as an herbicide for the control of weeds in turf grasses at golf courses in Florida. There are concerns about arsenic (As) contamination of local shallow groundwater from the application of MSMA. The distinction between "free" As and colloid-bound/complexed As in soil solution is important for understanding the mobility and bioavailability of As in the environment. In this study, the equilibrium membrane (500 and 3500 Da) dialysis method was employed to determine the "free" and "bound" As in water extracts of five types of golf-course soils containing coated and uncoated sands in various proportions with peat. All samples were evaluated for arsenic species (arsenite, AsIII and arsenate, AsV), dissolved organic matter, and additional constituents (iron, aluminum, and calcium). The impacts of microbial growth were evaluated by conducting experiments with and without the addition of sodium azide for one particular soil type. Results indicate that (1) the presence of peat in the soils plays a significant role in the distribution of As in the dissolved phase of soil solutions; (2) the majority of As present in the soil extracts from soils containing peat was associated with substances of molecular weight (MW) between 500 and 3500 Da; (3) the association of As and dissolved organic matter (DOM) in the soil solution strongly affected As bioavailability, thus determining As transformations via microorganism-mediated processes; and (4) the presence of peat greatly enhanced the release of iron, aluminum, and calcium from soil. Amendment of sand with peat is a common practice at Florida golf courses. However, the addition of peat will alter the properties of the soils, which in turn could affect As transport and transformation. The results of this study are useful for understanding the factors controlling As trapping and transport within porous soil media and in developing comprehensive plans for managing and remediating As contaminated environments, such as golf courses.  相似文献   

7.
Mineral processing effluents generated in hydrometallurgical industrial operations are sulfate based; hence it is of interest to investigate the effect sulfate matrix solution ("sulfate media") has on arsenate adsorption onto ferrihydrite. In this work, in particular, the influence of media (SO4(2-) vs NO3-), added gypsum, and pH alteration on the adsorption of arsenate onto ferrihydrite has been studied. The ferrihydrite precipitated from sulfate solution incorporated a significant amount of sulfate ions and showed a much higher adsorption capacityfor arsenate compared to nitrateferrihydrite at pH 3-8 and initial Fe/As molar ratios of 2, 4, and 8. Adsorption of arsenate onto sulfate-ferrihydrite involved ligand exchange with SO4(2-) ions that were found to be more easily exchangeable with increasing pH. Added gypsum to the adsorption system significantly enhanced the uptake of arsenate by ferrihydrite at pH 8. Equilibration treatment at acidic pH and addition of gypsum markedly improved the stability of adsorbed arsenate on ferrihydrite when pH was elevated. Comparison of arsenate adsorption onto ferrihydrite to coprecipitation of arsenate with iron(III) showed the latter process to lead to higher arsenic removal.  相似文献   

8.
本研究选取云南省典型砷污染土壤,以盆栽试验的方式,采用土壤砷形态分级连续浸提法和植物砷形态分级提取法,对三七生长的根际-非根际土壤中砷形态及三七中砷的赋存形态相关性进行研究。结果表明:(1)根际-非根际土壤中各砷形态含量由高到低的总体趋势为:残渣态>结晶铁锰或铁铝水化氧化物结合态>无定形和弱结晶铁铝或铁锰水化氧化物结合态>专性吸附态>非专性吸附态,残渣态所占比重最大,可达62%~86%。受根部活动的影响,非专性吸附态砷的含量均为根际土>非根际土。(2)三七根部砷的赋存形态为Fr最高,含量为4.12mg/kg~7.60mg/kg。FHAc和FHCl虽迁移活性较弱但其所占的比例却不容忽视,最高可达25%。(3)根际-非根际土壤中不同砷形态与土壤总砷均呈正相关,其中残渣态R2=0.976。根际土中活性较强的非专性吸附态砷R2=0.499。(4)高砷土壤中砷形态与三七根部砷赋存形态间呈极显著相关,R2=0.992。中高砷土壤和中度砷土壤非根际土壤中的砷形态与三七根部砷赋存形态的相关系数较根际土有所升高,具有潜在砷毒害风险。  相似文献   

9.
Leaching tests, Fourier transform infrared spectroscopy (FTIR), extended X-ray absorption fine structure (EXAFS) spectroscopy, and thermodynamic modeling were performed to investigate arsenate [As(V)] immobilization mechanisms in iron hydroxide sludge stabilized with cement. The sludge from a groundwater remediation site in Tacoma, WA was mixed and immobilized with premixed cement to reach cement-to-sludge ratios of 2.5, 3.3, 5, 10, and 20 (wt premixed cement/wt dry sludge). The EXAFS analysis determined that As(V) formed bidentate mononuclear complexes on the iron hydroxide surface in the sludge. The adsorbed As(V) had a characteristic FTIR band at 830 cm(-1). Cement treatment converted the adsorbed As(V) to calcium arsenate precipitate with a FTIR peak at 860 cm(-1). The chemical forms of the As(V) were incorporated in an adsorption triple layer model (TLM) to describe the leaching behavior of As(V) in a pH range between 3 and 12. Cement treatment significantly reduced arsenic mobility because of the formation of the sparingly soluble calcium arsenate.  相似文献   

10.
Structural information is important for understanding surface adsorption mechanisms of contaminants on metal (hydr)oxides. In this work, a novel technique was employed to study the interfacial structure of arsenate oxyanions adsorbed on γ-alumina nanoparticles, namely, differential pair distribution function (d-PDF) analysis of synchrotron X-ray total scattering. The d-PDF is the difference of properly normalized PDFs obtained for samples with and without arsenate adsorbed, otherwise identically prepared. The real space pattern contains information on atomic pair correlations between adsorbed arsenate and the atoms on γ-alumina surface (Al, O, etc.). PDF results on the arsenate adsorption sample on γ-alumina prepared at 1 mM As concentration and pH 5 revealed two peaks at 1.66 ? and 3.09 ?, corresponding to As-O and As-Al atomic pair correlations. This observation is consistent with those measured by extended X-ray absorption fine structure (EXAFS) spectroscopy, which suggests a first shell of As-O at 1.69 ± 0.01 ? with a coordination number of ~4 and a second shell of As-Al at ~3.13 ± 0.04 ? with a coordination number of ~2. These results are in agreement with a bidentate binuclear coordination environment to the octahedral Al of γ-alumina as predicted by density functional theory (DFT) calculation.  相似文献   

11.
Although earthworms have been found to inhabit arsenic-rich soils in the U.K., the mode of arsenic detoxification is currently unknown. Biochemical analyses and subcellular localization studies have indicated that As3+-thiol complexes may be involved; however, it is not known whether arsenic is capable of inducing the expression of metallothionein (MT) in earthworms. The specific aims of this paper were (a) to detect and gain an atomic characterization of ligand complexing by X-ray absorption spectrometry (XAS), and (b) to employ a polyclonal antibody raised against an earthworm MT isoform (w-MT2) to detect and localize the metalloprotein by immunoperoxidase histochemistry in the tissues of earthworms sampled from arsenic-rich soil. Data suggested that the proportion of arsenate to sulfur-bound species varies within specific earthworm tissues. Although some arsenic appeared to be in the form of arsenobetaine, the arsenic within the chlorogogenous tissue was predominantly coordinated with S in the form of -SH groups. This suggests the presence of an As::MT complex. Indeed, MT was detectable with a distinctly localized tissue and cellular distribution. While MT was not detectable in the surface epithelium or in the body wall musculature, immunoperoxidase histochemistry identified the presence of MT in chloragocytes around blood vessels, within the typhlosolar fold, and in the peri-intestinal region. Focal immunostaining was also detectable in a cohort of cells in the intestinal wall. The results of this study support the hypothesis that arsenic induces MT expression and is sequestered by the metalloprotein in certain target cells and tissues.  相似文献   

12.
This research compares the As and Cr chemistry of dislodgeable residues from chromated copper arsenate (CCA)-treated wood collected by two different techniques (directly from the board surface either by rubbing with a soft bristle brush or by rinsing from human hands after contact with CCA-treated wood) and demonstrates that these materials are equivalent in terms of both the chemical form and bonding of As and Cr and in terms of the As leaching behavior. This finding links the extensive chemical characterization and bioavailability testing that has been done previously on the brush-removed residue to a material that is derived from human skin contact with CCA-treated wood. Additionally, this research characterizes the arsenic present in biological fluids (sweat and simulated gastric fluid) following contact with these residues. The data demonstrate that in biological fluids the arsenic is present primarily as free arsenate ions. Arsenic-containing soils were also extracted into human sweat to evaluate the potential for arsenic dissolution from soils at the skin surface. For soils from field sites, only a small fraction of the total arsenic is soluble in sweat. Based on comparisons to reference materials that have been used for in vivo dermal absorption studies, these findings suggest that the actual relative bioavailability via dermal absorption of As from CCA residues and soil may be well below the current default value of 3% used by U.S. EPA.  相似文献   

13.
The kinetics of Ni sorption to two Delaware agricultural soils were studied to quantitatively assess the relative importance of Ni adsorption on soil organic matter (SOM) and the formation of Ni layered double hydroxide (Ni-LDH) precipitates using both experimental studies and kinetic modeling. Batch sorption kinetic experiments were conducted with both soils at pH 6.0, 7.0, and 7.5 from 24 h up to 1 month. Time-resolved Ni speciation in soils was determined by X-ray absorption spectroscopy (XAS) during the kinetic experiments. A kinetics model was developed to describe Ni kinetic reactions under various reaction conditions and time scales, which integrated Ni adsorption on SOM with Ni-LDH precipitation in soils. The soil Ni speciation (adsorbed phases and Ni-LDH) calculated using the kinetics model was consistent with that obtained through XAS analysis during the sorption processes. Under our experimental conditions, both modeling and XAS results demonstrated that Ni adsorption on SOM was dominant in the short term and the formation of Ni-LDH precipitates accounted for the long-term Ni sequestration in soils, and, more interestingly, that the adsorbed Ni may slowly transfer to Ni-LDH phases with longer reaction times.  相似文献   

14.
Several recent investigations have shown encouraging potential for the removal of arsenic (As) from groundwater by granular zerovalent iron (Fe0). In contrast to previous studies conducted, we have investigated the applicability of this method and the nature of As bonding under conditions with dissolved sulfide. Three column tests were performed over the period of 1 year using solutions with either As(V) or As(II) (2-200 mg/L) in the input solution. Arsenic outflow concentrations decreased from initially 30-100 microg/L to concentrations of below 1 microg/L with time. XANES (X-ray absorptions near edge structure) and EXAFS (expanded X-ray absorption fine structure) spectra indicated that As in the solid phase is not only directly coordinated with oxygen, as is the case in adsorbed or coprecipitated arsenite and arsenate. Samples with high sulfur content showed additional bonding, for which Fourier transformations of EXAFS data exhibited a peak between 2.2 and 2.4 A. This bonding most likely originated from the direct coordination of sulfur or iron with As, which was incorporated in iron sulfides orfrom adsorbed thioarsenites. The formation of this sulfide bonding supports the removal of As by Fe0 because sulfide production by microbial sulfate reduction is ubiquitous in permeable reactive barriers composed of Fe0.  相似文献   

15.
Ketza River mine tailings deposited underwater and those exposed near the tailings impoundment contain approximately 4 wt % As. Column-leaching tests indicated the potential for high As releases from the tailings. The tailings are composed dominantly of iron oxyhydroxides, quartz, calcite, dolomite, muscovite, ferric arsenates, and calcium-iron arsenates. Arsenopyrite and pyrite are trace constituents. Chemical compositions of iron oxyhydroxide and arsenate minerals are highly variable. The XANES spectra indicate that arsenic occurs as As(V) in tailings, but air-drying prior to analysis may have oxidized lower-valent As. The EXAFS spectra indicate As-Fe distances of 3.35-3.36 A for the exposed tailings and 3.33-3.35 A for the saturated tailings with coordination numbers of 0.96-1.11 and 0.46-0.64, respectively. The As-Ca interatomic distances ranging from 4.15 to 4.18 A and the coordination numbers of 4.12-4.58 confirm the presence of calcium-iron arsenates in the tailings. These results suggest that ferric arsenates and inner-sphere corner sharing or bidentate-binuclear attachment of arsenate tetrahedra onto iron hydroxide octahedra are the dominant form of As in the tailings. EXAFS spectra indicate that the exposed tailings are richer in arsenate minerals whereas the saturated tailings are dominated by the iron oxyhydroxides, which could help explain the greater release of As from the exposed tailings during leaching tests. It is postulated that the dissolution of ferric arsenates during flow-through experiments caused the high As releases from both types of tailings. Arsenic tied to iron oxyhydroxides as adsorbed species are considered stable; however, iron oxyhydroxides having low Fe/As molar ratios may not be as stable. Continued As releases from the tailings are likely due to dissolution of both ferric and calcium-iron arsenates and desorption of As from high-As bearing iron oxyhydroxides during aging.  相似文献   

16.
For many coastal regions of the world, it has been common practice to apply seaweed to the land as a soil improver and fertilizer. Seaweed is rich in arsenosugars and has a tissue concentration of arsenic up to 100 micro/g g(-1). These arsenic species are relatively nontoxic to humans; however, in the environment they may accumulate in the soil and decompose to more toxic arsenic species. The aim of this study was to determine the fate and biotransformation of these arsenosugars in soil using HPLC-ICP-MS analysis. Data from coastal soils currently manured with seaweeds were used to investigate if arsenic was accumulating in these soils. Long-term application of seaweed increased arsenic concentrations in these soils up to 10-fold (0.35 mg of As kg(-1) for nonagronomic peat, 4.3 mg of As kg(-1) for seaweed-amended peat). The biotransformation of arsenic was studied in microcosm experiments in which a sandy (machair) soil, traditionally manured with seaweed, was amended with Laminaria digitata and Fucus vesiculosus. In both seaweed species, the arsenic occurs in the form of arsenosugars (85%). The application of 50 g of seaweed to 1 kg of soil leads to an increase of arsenic in the soils, and the dominating species found in the soil pore water were dimethylarsinic acid (DMA(V)) and the inorganic species arsenate (As(V)) and arsenite (As(III)) after the initial appearance of arsenosugars. A proposed decomposition pathway of arsenosugars is discussed in which the arsenosugars are transformed to DMA(V) and further to inorganic arsenic without appreciable amounts of methylarsonic acid (MA(V)). Commercially available seaweed-based fertilizers contain arsenic concentration between 10 and 50 mg kg(-1). The arsenic species in these fertilizers depends on the manufacturing procedure. Some contain mainly arsenosugars while others contain mainly DMA(V) and inorganic arsenic. With the application rates suggested by the manufacturers, the application of these fertilizers is 2 orders of magnitude lower than the maximum permissible sewage sludge load for arsenic (varies from 0.025 kg ha(-1) yr(-1) in Styria, Austria, to 0.7 kg ha(-1) yr(-1) in the U.K.), while a direct seaweed application would exceed the maximum arsenic load by at least a factor of 2.  相似文献   

17.
Directly assembled wormhole mesostructures with high level functionalized mercaptan (MP-HMS) have been shown to be effective mercury(II) (Hg2+) trapping agents. Sorption of Hg2+ onto MP-HMS was investigated using X-ray absorption spectroscopy (XAS) to identify the structural coordination of the adsorbed Hg. Samples with different fractions of mercaptan functionalized groups (i.e., x = 0.1 and 0.5) with various Hg/S molar ratios ranging from 0.05 to 1.4 were investigated. XAS analysis indicates that adsorbed Hg first coordination shell is best fitted with an Hg-O path and an Hg-S path. The Hg-S atomic distance (R(Hg-S)) remained relatively constant while the Hg-S coordination numbers (CN) decreased as Hg/S loading increased. For the Hg-O path, both the CN and the R(Hg-O) increased with increasing Hg loading. XAS results suggest that at low Hg loadings, adsorbed Hg2+ forms mostly monodentate sulfur complexes (-S-Hg-OH) with the sulfur functional groups on the MP-HMS surfaces. At high Hg loadings, the Hg coordination environment is consistent with the formation of a double-layer structure of Hg attached to sulfur binding sites (-S-Hg-O-Hg-OH).  相似文献   

18.
Insufficient information exists about the speciation of arsenic leaching from in-service chromated copper arsenate (CCA)-treated products and the overall impact to soils and groundwater. To address this issue, two decks were constructed, one from CCA-treated wood and the other from untreated wood. Both decks were placed in the open environment where they were impacted by rainfall. Over a one-year period, rainwater runoff from the decks and rainwater infiltrating through 0.7 m of sand below the decks was collected and analyzed for arsenic species by HPLC-ICP-MS. The average arsenic concentration in the runoff of the untreated deck was 2-3 microg/L, whereas from the CCA-treated deck it was 600 microg/L. Both inorganic As(III) and As(V) were detected in the runoff from both decks, with inorganic As(V) predominating. No detectable levels of organoarsenic species were observed. The total arsenic concentration in the infiltrated water of the treated deck had risen from a background concentration of 3 microg/L to a concentration of 18 microg/L at the end of the study. Data from the deck study were combined with annual CCA-treated wood production statistics to develop a mass balance model to estimate the extent of arsenic leaching from in-service CCA-treated wood structures to Florida soils. Results showed that during the year 2000, of the 28 000 t of arsenic imported into the state and utilized for in-service CCA-treated wood products, approximately 4600 t had already leached. Future projections suggest that an additional 11,000 t of arsenic will leach during in-service use within the next 40 years.  相似文献   

19.
Arsenic is naturally present in marine ecosystems, and these can become contaminated from mining activities, which may be of toxicological concern to organisms that bioaccumulate the metalloid into their tissues. The toxic properties of arsenic are dependent on the chemical form in which it is found (e.g., toxic inorganic arsenicals vs nontoxic arsenobetaine), and two analytical techniques, high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and X-ray absorption spectroscopy (XAS), were used in the present study to examine the arsenic species distribution in blue mussels (Mytilus edulis) obtained from an area where there is a strong arsenic concentration gradient as a consequence of mining impacted sediments. A strong positive correlation was observed between the concentration of inorganic arsenic species (arsenic compounds with no As-C bonds) and total arsenic concentrations present in M. edulis tissues (R(2) = 0.983), which could result in significant toxicological consequences to the mussels and higher trophic consumers. However, concentrations of organoarsenicals, dominated by arsenobetaine, remained relatively constant regardless of the increasing As concentration in M. edulis tissue (R(2) = 0.307). XANES bulk analysis and XAS two-dimensional mapping of wet M. edulis tissue revealed the presence of predominantly arsenic-sulfur compounds. The XAS mapping revealed that the As(III)-S and/or As(III) compounds were concentrated in the digestive gland. However, arsenobetaine was found in small and similar concentrations in the digestive gland as well as the surrounding tissue suggesting arsenobetaine may being used in all of the mussel's cells in a physiological function such as an intracellular osmolyte.  相似文献   

20.
As(III) uptake from solution by synthetic mackinawite is examined as a function of pH and initial As(III) concentration using X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD). XAS data indicate that when mackinawite is reacted at pH 5, 7, and 9 with 5 x 10(-4) M As(III), arsenic is reduced from its original +3 valence state and is primarily coordinated as As-S (approximately 2.26 angstroms) and As-As (approximately 2.54 angstroms), which is consistent with the formation of a realgar-like phase in agreement with XRD data. At 5 x 10(-5) M As(III), samples are markedly different from those collected at an order of magnitude higher concentration and differ at each pH value. The XAS analysis of mackinawite samples reacted with 5 x 10(-5) M As(III) shows a transition from As-O coordination to As-S coordination as pH decreases, with the sample reacted at pH 5 resembling realgar. Under alkaline conditions, arsenic retains its original valence state of +3 and is primarily coordinated to oxygen at a distance of 1.75 angstroms. This may be attributed to uptake by adsorption as an As(III) oxyanion. These results provide the basis for selecting the reactions needed for modeling and are beneficial in understanding the mechanisms of arsenite uptake by mackinawite under anoxic sulfidic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号