首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although arsenic adsorption/desorption behavior on aluminum and iron (oxyhydr)oxides has been extensively studied, little is known about arsenic adsorption/desorption behavior by bimetal Al:Fe hydroxides. In this study, influence of the Al:Fe molar ratio, pH, and counterion (Ca2+ versus Na+) on arsenic adsorption/desorption by preformed coprecipitated Al:Fe hydroxides was investigated. Adsorbents were formed by initial hydrolysis of mixed Al3+/ Fe3+ salts to form coprecipitated Al:Fe hydroxide products. At Al:Fe molar ratios < or = 1:4, Al3+ was largely incorporated into the iron hydroxide structure to form a poorly crystalline bimetal hydroxide; however, at higher Al:Fe molar ratios, crystalline aluminum hydroxides (bayerite and gibbsite) were formed. Although approximately equal As(V) adsorption maxima were observed for 0:1 and 1:4 Al:Fe hydroxides, the As(III) adsorption maximum was greater with the 0:1 Al: Fe hydroxide. As(V) and As(III) adsorption decreased with further increases in Al:Fe molar ratio. As(V) exhibited strong affinity to 0:1 and 1:4 Al:Fe hydroxides at pH 3-6. Adsorption decreased at pH > 6.5; however, the presence of Ca2+ compared to Na+ as the counterion enhanced As( retention by both hydroxides. There was more As(V) and especially As(III) desorption by phosphate with an increase in Al:Fe molar ratio.  相似文献   

2.
An Fe-Ce bimetal adsorbent was investigated with X-ray powder diffraction (XRD), transmission electron micrograph (TEM), Fourier transform infrared spectra (FTIR), and X-ray photoelectron spectroscopy (XPS) methods for a better understanding of the effect of surface properties on arsenate (As(V)) adsorption. In the adsorption test, the bimetal oxide adsorbent showed a significantly higher As(V) adsorption capacity than the referenced Ce and Fe oxides (CeO2 and Fe3O4) prepared by the same procedure and some other arsenate adsorbents reported recently. XRD measurement of the adsorbent demonstrated that the phase of magnetite (Fe3O4) disappears gradually with the increasing dosage of Ce4+ ions until reaching a molar ratio of Ce4+ to Fe3+ and Fe2+ of 0.08:0.2:0.1 (Fe-CeO8 refers to the adsorbent prepared at this ratio), and the phase of CeO2 begins to appear following a further increase of the Ce dose. Combined with the results of TEM observation, it was assumed that a solid solution of Fe-Ce is formed following the disappearance of the magnetite phase. Occurrence of a characteristic surface hydroxyl group (MOH, metal surface hydroxyl, 1126 cm(-1)), which showed the highest band intensity in the solid solution state, was confirmed on the bimetal oxide adsorbent by FTIR. Quantificational calculation from the XPS narrow scan results of O(1s) spectra also indicated that the formation of the bimetal Fe-CeO8 was composed of more hydroxyl (30.8%) than was the formation of CeO2 and Fe3O4 (12.6% and 19.6%). The results of adsorption tests on Fe-CeO8 at differentAs(V) concentrations indicated that both the integral area of the As-O band at 836 cm(-1) and the As(V) adsorption capacity increased almost linearly with the decrease of the integral area of M-OH bands at 1126 cm(-1), proving that the adsorption of As(V) by Fe-CeO8 is mainly realized through the mechanism of quantitative ligand exchange. The atomic ratio of Fe on Fe-CeOB decreased from 20.1% to 7.7% with the increase of the As atom ratio from 0 to 16% after As(V) adsorption, suggesting that As(V) adsorption might be realized through the replacement of the M-OH group of Fe (Fe-OH) with arsenate. The well splitting of three v3 bands at As-O band (836 cm(-1)) of FTIR and the hydroxyl ratio (1.7) of Fe-CeO8 calculated from the XPS results suggested that the diprotonated monodentate complex (SOAsO(OH)2) is possibly dominant on the surface of Fe-CeO8.  相似文献   

3.
Cadmium adsorption on aluminum oxide in the presence of polyacrylic acid   总被引:1,自引:0,他引:1  
Adsorption of metals from aqueous solution onto oxide and other surfaces is known to affect trace metal transport in many natural and engineered systems. It is therefore important to understand whether dissolved metal inputs will be easily bound to particles or will be strongly complexed in solution and transported with the water phase. The effect of poly(acrylic acid) (PAA), representing a model compound for natural organic matter, on the adsorption of Cd(II) onto gamma-Al2O3 was determined using batch adsorption experiments over a pH range from 4 to 10. Initially, interactions among the individual components were evaluated. Cadmium adsorption onto alumina showed a typical S-shaped metal adsorption curve. PAA adsorption onto gamma-Al2O3 decreased with increase in pH. The affinity of PAA for Cd2+ increased strongly with pH. In ternary systems, the presence of PAA resulted in an enhancement of Cd(II) adsorption below pH 6, apparently due to ternary surface complex formation. Above pH 6, a decrease in cadmium adsorption onto gamma-Al2O3 was observed resulting from an increase in the concentration of soluble Cd-PAA complexes. Overall, results indicate that the presence of natural organic matter could have a significant impact on the distribution and mobility of cadmium in the environment. Simple surface complexation modeling was insufficient to describe behavior in the ternary systems due to the complexity of the PAA polymer.  相似文献   

4.
活性氧化铝吸附对大豆卵磷脂品质的影响   总被引:1,自引:0,他引:1  
采用活性氧化铝(柱层析)对大豆卵磷脂进行吸附脱色,发现活性氧化铝对卵磷脂有一定的脱色作用,对卵磷脂的纯度与质量也产生一定的影响.其优化条件为活性氧化铝加入量35%,脱色温度35℃,脱色时间40 min.最终产品色泽降至3.0,磷含量增至3.6%,卵磷脂含量提高至65%.  相似文献   

5.
Coverage of clay surfaces by soil organic matter (SOM) may limitthe efficacy of the soil mineral fractions for adsorption of organic contaminants and pesticides. Two methods were scrutinized for quantitatively assessing the availability of clay surfaces in a smectitic Webster A-horizon soil for sorption of p-nitrocyanobenzene (p-NCB) and diuron. One method, described previously, involves the summation of independent contributions of SOM and swelling clays to sorption of organic solutes. For this method, several assumptions must be made and/or procedural difficulties overcome in the determination of certain terms in the equation proposed for calculating the fractional availability of mineral surfaces (fa). To alleviate the methodological limitations, we developed an alternative approach for determining fa. Good agreement between fa values was obtained from both methods for p-NCB but not diuron. For p-NCB sorption, fa values varied between 0.55 and 0.71. For diuron sorption, our alternative equation estimated fa values varied between 0.41 and 0.61; the other approach yielded negative values. The results demonstrate that SOM does reduce the availability of clay surfaces, hence, suppressing sorption by the Webster A-horizon soil. Our newly developed method provides more reasonable estimates of the availability of soil-clay surfaces for sorption than an earlier published approach.  相似文献   

6.
Heated aluminum oxide particles (HAOPs) are a newly synthesized adsorbent with attractive properties for use in hybrid adsorption/membrane filtration systems. This study compared removal of natural organic matter (NOM) from water by adsorption onto HAOPs with that by adsorption onto powdered activated carbon (PAC) or coagulation with alum or ferric chloride (FeCl3); explored the overlap between the NOM molecules that preferentially adsorb to HAOPs and those that are removed by the more conventional approaches; and evaluated NOM removal and fouling in hybrid adsorbent/membrane systems. For equivalent molar doses of the trivalent metals, HAOPs remove more NOM, and NOM with higher SUVA254, than alum or FeCl3. Most of the HAOPs-nonadsorbable fraction of the NOM can be adsorbed by PAC; in fact, that fraction appears to be preferentially adsorbed compared to the average NOM in untreated water. Predeposition of the adsorbents on a microfiltration membrane improves system performance. For the water tested, at a flux of 100 L/m2-hr, predeposition of 11 mg/L PAC and 5 mg/L HAOPs (as Al3+) allowed the system to operate 5 times as long before the transmembrane pressure increased by 1 psi and to remove 10-20 times as much NOM as when no adsorbents were added.  相似文献   

7.
Ionic liquids are being developed as a replacement for volatile organic solvents in a range of industrial applications. These liquids have a vanishingly small vapor pressure, making them an attractive alternative to the volatile organic solvents. However, a thorough assessment of the environmental impact of the use of ionic liquids requires a more complete understanding of their fate and transport in environmental systems. Toward this end, we measured the adsorption of the ionic liquid 1-butyl, 3-methylimidazolium chloride (Bmim CI) onto a range of surfaces meant to represent those commonly found in the near-surface environment. We measured adsorption onto the Gram-positive soil bacterial species Bacillus subtilis, onto gibbsite, onto quartz, and onto Na-montmorillonite. We conducted experiments as a function of pH, solid:solute ratio, time, and ionic strength. The experimental results reveal that Bmim CI is unstable in water below pH 6 and above pH 10 and that it exhibits pH independent and ionic strength dependent adsorption onto Na-montmorillonite with 0.4, 0.8, 1.0, 1.2, and 2.0 g/L of clay. We observed no adsorption of the Bmim CI onto B. subtilis (3.95 or 7.91 g (dry weight) bacteria/L) at pH 5.5-8.5 or onto gibbsite (500 or 1285 g/L) or quartz (1000 and 2000 g/L) over the pH range 6-10. Calculated distribution coefficient (KD) values for Bmim CI onto the Na-montmorillonite change as a function of ionic strength; the 10(-4) M ionic strength KD value is 1735 +/- 269 L/Kg, and the 10(-1) M ionic strength KD is 1133 +/- 291 L/Kg. Our results suggest that the geologic retardation of this class of ionic liquid, if present as a dissolved contaminant in the subsurface, would be significant when a significant fraction of interlayer clays are present. However, adsorption onto other common geologic and biological surfaces is likely to be minimal, and the ionic liquids may travel unimpeded in groundwater systems in which these types of surfaces dominate.  相似文献   

8.
Chlorinated hydrocarbons are among the most recalcitrant pollutants for control by sorption or catalytic destruction. High surface-area alumina holds promise as a catalytic media as well as a component of other binary catalyst systems. We have prepared an alumina catalyst using the aerogel technique that has a very high surface area of 550 m2/g. This catalyst destroys carbon tetrachloride with an efficiency >99% at 400 degrees C. Its reactivity toward carbon tetrachloride is remarkably higher than that of commercial alumina, which has a surface area of 155 m2/g. Carbon dioxide is the major product. Minor products include hydrogen chloride and tetrachloroethylene along with traces of phosgene. Some of the carbon tetrachloride reacts with the alumina to form aluminum chloride, which vaporizes to reveal a fresh catalytic surface. A mechanism for adsorption and destruction has been developed that involves chemisorption followed by surface to adsorbate oxygen transfer and adsorbate to surface chlorine transfer.  相似文献   

9.
10.
11.
High-resolution nitrogen (77 K) and carbon dioxide (273 K) adsorption at subatmospheric pressures has been studied for a range of model soils of various origins with different organic matter (OM) contents. It is demonstrated that N2 and CO2 molecules probe different regions of soil particles. Nitrogen is adsorbed primarily on the outer surface of soil particles, while CO2 has a higher affinity to OM domains. Low-pressure nitrogen adsorption reveals that soil particle surfaces consist of clay/mineral domains with discrete patches of OM. A linear correlation has been found between the CO2 uptake and the amount of organic carbon reduced per unit of the external surface area. A new method for discriminating the microporosity of soil particles and accessibility of OM has been proposed.  相似文献   

12.
13.
Increases in mineral nitrogen in gamma-irradiated soils have been investigated in relation to dose over the range 0.05-3 Mrad, especially with regard to formation of nitrate. All soils showed a significant increase in nitrate-N after irradiation, but the response was much greater in the most organic series and reached a maximum after 0.4 Mrad; it was followed by a rise in nitrite at 0.6 Mrad. The amount of radiation that gave maximum accumulation of nitrate-N varied between soils, probably owing to differences in the surviving population of nitrifying bacteria. Perfusion of soil with ammonium ions showed that rapid nitrification after doses greater than 0.1 Mrad was most likely to result from oxidation by non-proliferating cells of the nitrifying bacteria rather than increased proliferation of the survivors.  相似文献   

14.
Atomistic simulations were performed to study the diffusion and adsorption of Ca(2)UO(2)(CO3)3 and of some of its constituent species, i.e., UO(2)2+, CO(3)2–, and UO(2)CO3, in feldspar nanosized fractures. Feldspar is important to uranium remediation efforts at the U.S. Department of Energy Hanford site as it has been found in recent studies to host contaminants within its intragrain fractures. In addition, uranyl carbonate species are known to dominate U(VI) speciation in conditions relevant to the Hanford site. Molecular dynamics (MD) simulations showed that the presence of the feldspar surface diminishes the diffusion coefficients of all of the species considered in this work and that the diffusion coefficients do not reach their bulk aqueous solution values in the center of a 2.5 nm fracture. Moreover, the MD simulations showed that the rate of decrease in the diffusion coefficients with decreasing distance from the surface is greater for larger adsorbing species. Free energy profiles of the same species adsorbing on the feldspar surface revealed a large favorable free energy of adsorption for UO(2)2+ and UO(2)CO3, which are able to adsorb to the surface with their uranium atom directly bonded to a surface hydroxyl oxygen, whereas adsorption of CO(3)2– and Ca(2)UO(2)(CO3)3, which attach to the surface via hydrogen bonding from a surface hydroxyl group to a carbonate oxygen, was calculated to be either only slightly favorable or unfavorable.  相似文献   

15.
The subsurface migration of Pu may be enhanced by the presence of colloidal forms of Pu. Therefore, complete evaluation of the risk posed by subsurface Pu contamination needs to include a detailed physical/chemical understanding of Pu colloid formation and interactions of Pu colloids with environmentally relevant solid phases. Transmission electron microscopy (TEM) was used to characterize Pu nanocolloids and interactions of Pu nanocolloids with goethite and quartz. We report that intrinsic Pu nanocolloids generated in the absence of goethite or quartz were 2-5 nm in diameter, and both electron diffraction analysis and HRTEM confirm the expected Fm3m space group with the fcc, PuO2 structure. Plutonium nanocolloids formed on goethite have undergone a lattice distortion relative to the ideal fluorite-type structure, fcc, PuO2, resulting in the formation of a bcc, Pu4O7 structure. This structural distortion results from an epitaxial growth of the plutonium colloid on goethite, leading to stronger binding of plutonium to goethite compared with other minerals such as quartz, where the distortion was not observed. This finding provides new insight for understanding how molecular-scale behavior at the mineral-water interface may facilitate transport of plutonium at the field scale.  相似文献   

16.
Simulated pot experiments were conducted on four rice (Oryza sativa L.) genotypes (Triguna, IR-36, PNR-519, and IET-4786) to examine the effects of As(V) on amino acids and mineral nutrient status in grain along with antioxidant response to arsenic exposure. Rice genotypes responded differentially to As(V) exposure in terms of amino acids and antioxidant profiles. Total amino acid content in grains of all rice genotypes was positively correlated with arsenic accumulation. While, most of the essential amino acids increased in all cultivars except IR-36, glutamic acid and glycine increased in IET-4786 and PNR-519. The level of nonprotein thiols (NPTs) and the activities of superoxide dismutase (SOD; EC 1.15.1.1), glutathione reductase (GR; EC 1.6.4.2) and ascorbate peroxidase (APX; EC 1.11.1.11) increased in all rice cultivars except IET-4786. A significant genotypic variation was also observed in specific arsenic uptake (SAU; mg kg(-1)dw), which was in the order of Triguna (134) > IR-36 (71) > PNR-519 (53) > IET-4786 (29). Further, application of As(V) at lower doses (4 and 8 mg L(-1) As) enhanced the accumulation of selenium (Se) and other nutrients (Fe, P, Zn, and S), however, higher dose (12 mg L(-1) As) limits the nutrient uptake in rice. In conclusion, low As accumulating genotype, IET-4786, which also had significantly induced level of essential amino acids, seems suitable for cultivation in moderately As contaminated soil and would be safe for human consumption.  相似文献   

17.
Long-term adsorption of phenanthrene to soils was characterized in a silt-loam (LHS), a sandy soil (SBS), and a podzolized soil (CNS) by use of the Polanyi-Manes model, a Langmuir-type model, and a black carbon-water distribution coefficient (K(BC)) at a relative aqueous concentration (C(e)/S(w)) of 0.002-0.32. Aqueous desorption kinetic tests and temperature-programmed desorption (TPD) were also used to evaluate phenanthrene diffusivities and desorption activation energies. Adsorption contribution in soils was 48-70% after 30 days and 64-95% after 270 days. Significant increases in adsorption capacity with aging suggest that accessibility of phenanthrene to fractions of SBS soil matrix was controlled by sorptive diffusion at narrow meso- and micropore constrictions. Similar trends were not significant for LHS silt-loam or CNS podzol. Analysis of TPD profiles reveal desorption activation energies of 35-53 kJ/mol and diffusivities of 1.6 x 10(-7-)9.7 x 10(-8) cm2/s. TPD tests also indicate that the fraction of phenanthrene mass not diffusing from soils was located within micropores and narrow width mesopores with a corresponding volume of 1.83 x 10(-5-)6.37 x 10(-5) cm3/g. These values were consistent with the modeled adsorption contributions, thus demonstrating the need for such complimentary analytical approach in the risk assessment of organic contaminants.  相似文献   

18.
The objective of this study was to provide fundamental knowledge of arsenate sorption on lithium/aluminum layered double hydroxide intercalated by chloride (Li/Al LDH-Cl) and further to reveal the contribution of exposed positive charge surface of Li/Al LDH-CI created by intercalating LiCl into Al(OH)3 layers to arsenate sorption. Therefore, sorption isotherms, envelopes and extended X-ray absorption fine structure (EXAFS) technique were employed to examine the reaction of arsenate on Li/Al LDH-Cl and on gibbsite. Based on an isotherm study, the sorption maximum of Li/Al LDH-Cl for arsenate was approximately six times higher than that of gibbsite. Sorption envelopes of arsenate on Li/Al LDH-Cl displayed a pH-sensitive behavior from pH 4.0 to 7.0, but it was insensitive to pH above pH 7.0, approaching to the pHpzc of Li/Al LDH-Cl (7.22). This transformation with shifted pHs illustrated that there were two types of reaction sites within Li/Al LDH-Cl that participate in arsenate sorption; one is pH-sensitive and the other is not. From EXAFS analysis, arsenate sorbed on Li/Al LDH, reacted not only with Al in the edges of Al-(OH)3 layers, but also with Li located in the vacant octahedral sites within Al(OH)3 layers; however, the decreasing intensity of As(V)-Al shells with increasing pH represented there were fewer As(V)-Al complex existed at higher pH, i.e., the complex between arsenate and Al is pH-sensitive. The superior sorption capability of Li/Al LDH-Cl to that of gibbsite could be attributed to the intercalated Li cations which served as the permanent sorption sites and made the surface of Al(OH)3 have high affinity to arsenate.  相似文献   

19.
The spectral induced polarization (SIP) technique is a promising approach for delineating subsurface physical and chemical property changes in a minimally invasive manner. To facilitate the understanding of position and chemical properties of reaction fronts that involve mineral precipitation in porous media, we investigated spatiotemporal variations in complex conductivity during evolution of urea hydrolysis and calcite precipitation reaction fronts within a silica gel column. The real and imaginary parts of complex conductivity were shown to be sensitive to changes in both solution chemistry and calcium carbonate precipitation. Distinct changes in imaginary conductivity coincided with increased hydroxide ion concentration during urea hydrolysis. In a separate experiment focused on the effect of hydroxide concentration on interfacial polarization of silica gel and well-sorted sand, we found a significant dependence of the polarization response on pH changes of the solution. We propose a conceptual model describing hydroxide ion adsorption behavior in silica gel and its control on interfacial polarizability. Our results demonstrate the utility of SIP for noninvasive monitoring of reaction fronts, and indicate its potential for quantifying geochemical processes that control the polarization responses of porous media at larger spatial scales in the natural environment.  相似文献   

20.
A novel model has been developed to describe the kinetics of Zn adsorption and desorption to soils. The model incorporates the mechanistic-based equilibrium model WHAM (Windermere humic aqueous model) to account for the chemical variation during the reaction (e.g., pH and Zn2+ concentration), the heterogeneity of binding sites of soil organic matter (SOM), and the nonlinear binding of Zn to SOM. To test the model, kinetic experiments were conducted using a stirred-flow method. Six soils, with low clay fractions and covering a wide range in SOM concentrations, and various Zn concentrations and pHs were studied. Under these experimental conditions, SOM is found to be the major adsorbent for Zn binding. The fast and slow Zn reactions with soils were associated, respectively, with the monodentate and bidentate binding sites of humic substances in WHAM. The model has only three fitting parameters, the two desorption rate coefficients for the fast (monodentate) and slow (bidentate) reaction sites which are constant and independent of soil type, and the reactive organic matter fraction of the total SOM in each soil. All other parameters are derived from WHAM. The model is able to predict Zn release from spiked soils including the effects of Ca competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号