首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We constructed three hydrogenase mutants from Anabaena sp. PCC 7120: ΔhupL (deficient in uptake hydrogenase), ΔhoxH (deficient in bidirectional hydrogenase), and ΔhupLhoxH (deficient in both genes), and showed that the Δhup and ΔhupLhoxH produced H2 at a rate 4–7 times that of wild-type under optimal conditions (Appl. Microbiol. Biotechnol. 58 (2002) 618). We have studied H2 producing activity of Δhup in more detail. H2 producing activity of Δhup cells was moderately improved in older cultures when 1% CO2 was added to the bubbling air. The efficiency of light energy conversion to H2 by the ΔhupL mutant at its highest H2 production stage was 1.0–1.6% at an actinic visible light intensity of lower than 50 W/m2 under argon atmosphere, and the activity lasted for at least 35 min. At 250 W/m2, H2 producing activity gradually decreased with illumination time.  相似文献   

2.
Screening of the University of Helsinki Culture Collection for naturally good H2 producing cyanobacteria recently revealed several promising strains. One of the superior strains is Calothrix 336/3, an N2-fixing heterocystous filamentous cyanobacterium. Making use of an important feature of the Calothrix 336/3 cells to adhere to the substrate, we applied an immobilization technique to improve H2 production capacity of this strain. We examined the basic properties of immobilization in Ca2+-alginate films in response to the production of H2 of the Calothrix 336/3 strain and as reference strains we used a model organism Anabaena PCC 7120 and its uptake hydrogenase mutant, ΔhupL, that allow us to compare the responses of different strains to alginate entrapment. Immobilization of the Calothrix 336/3 and ΔhupL mutant cells in Ca2+-alginate resulted in prolonged H2 production over several cycles. Immobilization of the Calothrix 336/3 cells was most successful and production of H2 could be measured even after 40 days after immobilization.  相似文献   

3.
Heterocyst-forming cells of the cyanobacterium Anabaena sp. strain PCC 7120 ΔHup, lacking an uptake hydrogenase, photobiologically produce H2 by nitrogenase. Under N2-rich atmosphere, the nitrogenase activity declines in a rather short time due to the sufficiency of combined nitrogen. From the parental ΔHup strain, site-directed double-crossover variants, dc-Q193S and dc-R284H, were created with amino acid substitutions presumed to be located in the vicinity of the FeMo-cofactor of nitrogenase. Unlike the case for the ΔHup strain, H2 production activities of the variants were not decreased by the presence of high concentrations of N2 and they continuously produced H2 over 21 days with occasional headspace gas replacement. This property of N2 insensitivity is a potentially useful strategy for reducing the cost of the culture gas in future practical applications of sustainable biofuel production. This Anabaena strain has only the Mo-containing nitrogenase which reduces acetylene to ethylene, but the dc-Q193S variant also produced ethane at low but measurable rates along with greater rates of ethylene production.  相似文献   

4.
Increasing awareness of environmental problems caused by the current use of fossil fuel-based energy, has led to the search for alternatives. Hydrogen is a good alternative and the cyanobacterium Anabaena sp. PCC 7120 is naturally able to produce molecular hydrogen, photosynthetically from water and light. However, this H2 is rapidly consumed by the uptake hydrogenase.This study evaluated the hydrogen production of Anabaena sp. PCC 7120 wild-type and mutants: hupL (deficient in the uptake hydrogenase), hoxH (deficient in the bidirectional hydrogenase) and hupL/hoxH (deficient in both hydrogenases) on several experimental conditions, such as gas atmosphere (argon and propane with or without N2 and/or CO2 addition), light intensity (54 and 152 ??Em−2s−1), light regime (continuous and light/dark cycles 16 h/8 h) and nickel concentrations in the culture medium.In every assay, the hupL and hupL/hoxH mutants stood out over wild-type cells and the hoxH mutant. Nevertheless, the hupL mutant showed the best hydrogen production except in an argon atmosphere under 16 h light/8 h dark cycles at 54 ??Em−2s−1 in the light period, with 1 ??M of NiCl2 supplementation in the culture medium, and under a propane atmosphere.In all strains, higher light intensity leads to higher hydrogen production and if there is a daily 1% of CO2 addition in the gas atmosphere, hydrogen production could increase 5.8 times, related to the great increase in heterocysts differentiation (5 times more, approximately), whereas nickel supplementation in the culture medium was not shown to increase hydrogen production. The daily incorporation of 1% of CO2 plus 1% of N2 did not affect positively hydrogen production rate.  相似文献   

5.
6.
The hupL gene, encoding the uptake hydrogenase large subunit, in Nostoc sp. strain ATCC 29133, a strain lacking a bidirectional hydrogenase, was inactivated by insertional mutagenesis. Recombinant strains were isolated and analysed, and one hupL strain, NHM5, was selected for further study. Cultures of NHM5 were grown under nitrogen-fixing conditions and H2 evolution under air was observed using an H2 electrode.  相似文献   

7.
La1−xSrxMO3 (M = Mn, Fe) perovskites are investigated as potential redox materials for the thermochemical production of hydrogen. Thermogravimetric oxidation/reduction experiments indicated that the materials are able to lose and uptake oxygen reversibly from their lattice up to 5.5 wt.% for La1−xSrxMnO3 with x = 1 and up to 1.7 wt.% for La1−xSrxFeO3 with x = 0. Pulse reaction experiments indicated that the materials can be used as redox catalysts in a redox process where water is dissociated giving rise to the production of pure hydrogen during the oxidation step. The oxidation and reduction steps can be combined in a membrane reactor constructed from dense perovskite membranes towards a continuous and isothermal operation. The system is also able to operate on partial pressure-based desorption without the need of a carbon-containing reductant, so that a process towards hydrogen production, based only on renewable hydrogen source such as water, can be established. At steady state and 900 °C, 25 ± 7 cm3 (STP) H2 m−2 min−1 is produced in purified state.  相似文献   

8.
9.
M. Younsi  A. Aider  A. Bouguelia  M. Trari   《Solar Energy》2005,78(5):574-580
The properties of CuFeO2 have been studied according to the catalytic hydrogen production upon visible light. CuFeO2 with a low band gap Eg, a good chemical stability and a suitable flat band potential appears as a suitable candidate. The potential of photoelectrons allows favorably a thermodynamically H2-evolution from alkaline thiosulfate S2O32− solution. There is a major difference between pure and loaded oxide with some metal catalysts. Our best results have been obtained with unloaded CuFeO2 at 50 °C and pH 13.60. Thiosulfate S2O32− ions can be oxidized to sulfite SO32− and subsequently to sulfate SO42− and the electronic exchange occurs via mediation of surface states. The quite high H2-formation at the beginning shows a tendency towards saturation, it competes with SO32− produced by parallel oxidation of S2O32−.  相似文献   

10.
The efficiency of hydrogen production by different cyanobacterial species depends on several external factors. We report here the factors enhancing hydrogen production by filamentous non-heterocystous cyanobacterium Arthrospira sp. PCC 8005. Cells adapted to dark-anaerobic conditions produced hydrogen consistent with increased hydrogenase activity when supplemented with Fe2+. Stimulation of hydrogen production could be achieved by addition of reductants, either dithiothreitol or β-mercaptoethanol with higher production observed with the latter. Additionally, Fe2+ and β-mercaptoethanol added to nitrogen- and sulphur-deprived cells significantly stimulated H2 production with maximal value of 5.91 ± 0.14 μmol H2 mg Chla−1 h−1. Glucose and a small increase of osmolality imposed by either NaCl or sorbitol enhanced hydrogen production. High rates of hydrogen production were obtained in cells adapted in nitrogen-deprived medium with neutral and alkaline external pH, significant decrease of hydrogen production occurred under acidic external pH.  相似文献   

11.
Here we report the synthesis and photo electrochemical properties of super oxides CuYO2.50 and CuYO2.25 prepared from the delafossite CuYO2, respectively, by thermal oxidation at 380 °C under O2-flow and soft chemistry in NaBrO solution (5 N). Their applications as catalysts for H2 evolution upon visible light were investigated. The oxygen insertion was accompanied by partial oxidation of Cu+. For CuYO2.25, the chemical analyses revealed the presence of mixed valent states containing at least formally an equal number of Cu+ and Cu2+. The thermal analysis (TGA) under reducing atmosphere indicates that oxygen is inserted in different crystallographic sites, for CuYO2.25 it exhibits a two-step reduction mechanism with restoration of the parent oxide. In air, CuYO2+x is thermally stable up to 500 °C above which it undergoes irreversible conversion into Cu2Y2O5. They display p-type behavior ascribed to oxygen insertion and the conduction occurs by hopping mechanism between mixed copper valences. Under illumination, the oxides are stabilized by hole consumption reactions involving SO32− and S2− as holes scavengers. The flat-band potentials, lying between 0.17 and 0.26 VSCE, allow a spontaneous H2-photo formation. The rate of H2-evolution is altered by the oxygen insertion and the best photo activity (1.33 μmol h−1 mg−1) was obtained over CuYO2.25 immersed in S2− solution (0.025 M); CuYO2 is also reported for a comparison goal. Over time, the photoactivity is slowed down because of the competitive reduction of H2O with the final products namely S2O62− and Sn2−.  相似文献   

12.
Hydrogen producing bacterial strain was isolated from Indian cow dung and identified of the bacterial family Enterobacteriaceae. This lab isolate was differentiated from Citrobacter Y-19 at molecular level by using RAPD, PCR based technique, and OPO-03460 and OPO-17800 RAPD marker for this specific strain (lab isolate) was identified. Fermentative studies were investigated for important parameters, starting with pH of the culture, temperature, inoculum age and inoculum volume, initial substrate concentration and different substrates. Among different substrates, dextrose and sucrose were the preferred substrates for hydrogen production. The optimal starting pH of the culture was found to be 5.0. The H2 production increased with increase in temperature up to 30 °C. The maximum value of H2 production was recorded when inoculum volume was 12.5% of the culture broth and inoculum age was 14 h. Under batch fermentation conditions, the maximum hydrogen production rate and yield were 355.2 ml l−1 h−1 and 2.1 mol/mol glucose (conversion 35%), respectively. These results indicate that this lab isolate is an ideal hydrogen producer.  相似文献   

13.
This study explored the genetic engineering of Escherichia coli for hydrogen (H2) production. In E. coli W3110, the introduction of NAD+-reducing [NiFe]-hydrogenase from Cupriavidus necator, combined with the inactivation of three endogenous [NiFe]-hydrogenases, exhibited not only H2 production but also H2 uptake based on exogenous hydrogenase. Although the H2 production ability was much lower than the H2 uptake ability, inactivation of the ethanol, lactate, and succinate production pathways resulted in a marked increase in H2 production, demonstrating the bidirectional hydrogenase function in vivo depending on NADH/NAD+. Unexpectedly, H2 production was completely repressed under conditions for high expression of exogenous hydrogenase. Furthermore, the introduction of the heterologous enzyme markedly repressed the endogenous H2 production ability of E. coli W3110 but not the HST02. These in vivo behaviors largely correlated with in vitro hydrogenase activity suggested complicated interactions between the native and nonnative functional expression of [NiFe]-hydrogenases.  相似文献   

14.
This is a report on the production of O2 and H2 from photocatalytic and photochemical processes in the WO3–H2O–Ce4+aq system. The photoproduction of O2 and H2 was studied over the range of WO3 concentrations from 2 to 8 g dm−3, and conduction band electron scavenger concentrations 1–20 mM Ceaq4+. Medium and high concentrations of the electron scavenger gave mainly O2 as the main product. Dilute solutions of [Ceaq4+]< 2 mM initially produced dioxygen, and then hydrogen after an induction period of 3–4 h. Yields of 140–250 μmol O2  h−1 and 1–7 μmol H2 h−1 were obtained and were found to depend on the physical properties and content of WO3, the concentration of the electron scavenger, illumination period and wavelength, and the radiation geometry. The photoactivity of the suspension was correlated to the level of crystallinity of WO3 powders. The studied system utilizes WO3 to accomplish the initial light absorption, charge separation, and production of O2 and H+ from the interaction of water molecules with photogenerated WO3 valence band holes, in the presence of Ce4+aq species as a scavenger of conduction band electrons. This is followed by the evolution of H2 from a homogeneous photochemical reduction of H+ and/or H2O by photoexcited Ce3+aq, formed from the earlier reduction of Ce4+aq. The obtained results show that, with an appropriate design, tungsten trioxide is a promising material that can be used as a photoactive component in energy conversion systems or in environmental photocatalysis, using artificial or solar light.  相似文献   

15.
Upon feeding CO to the gas phase of a photosynthetic bacterium Rubrivivax gelatinosus CBS, a CO oxidation: H2 production pathway is quickly induced. Hydrogen is produced according to the equation CO+H2O→CO2+H2. Two enzymes are known to be involved in this pathway: a CO dehydrogenase (CODH) with a pH optimum of 8.0 and above, and a hydrogenase with a pH optimum near 7.5. Carbon monoxide dehydrogenase also displays a temperature optimum near 50°C. When CO mass transfer is not limited during a CO uptake measurement, an extreme fast rate of CO uptake was determined, allowing for the removal of near 87% of the dissolved CO from a bacterial suspension within 10 s. This process has therefore two potential applications, one in the production of H2 gas as a clean renewable fuel using the linked CO oxidation: H2 production pathway, and another in using the CODH enzyme itself as a fuel–gas conditioning catalyst. These applications thereby will improve the overall H2 economy when gasified waste biomass serves as the inexpensive feedstock.  相似文献   

16.
Films of polycrystalline Bi2S3 have been prepared onto bismuth and platinum substrates by electrodeposition from an aqueous sulfide bath. The films were thin, uniform and well adhered. Bi2S3 is a direct band gap semiconductor with a value of 1.28 eV optimally matched with the solar spectrum. The photoelectrochemical study was undertaken for the generation of hydrogen by using illuminated n-Bi2S3 particles; it was found that hydrogen evolution depends highly on the synthesis method of powder. Impregnation of platinum onto Bi2S3 shows a production enhancement of about 25%. The most active photocatalyst, prepared by a solvent thermal process and loaded with Pt in 0.1 M S2− alkaline electrolyte, yields 2.13×10−2 ml mg−1 of H2 after 4 h of irradiation with the visible output of a 500 W halogen lamp.  相似文献   

17.
Photoproduction of H2 gas has been examined in sulfur/phosphorus-deprived Chalmydomonas reinhardtii cultures, placed in photobioreactors (PhBRs) with different gas phase to liquid phase ratios (Vg.p./Vl.p.). The results demonstrate that an increase in the ratio stimulates H2 photoproduction activity in both algal suspension cultures and in algae entrapped in thin alginate films. In suspension cultures, a 4× increase (from ∼0.5 to ∼2) in Vg.p./Vl.p results in a 2× increase (from 10.8 to 23.1 mmol l−1 or 264–565 ml l−1) in the total yield of H2 gas. Remarkably, 565 ml of H2 gas per liter of the suspension culture is the highest yield ever reported for a wild-type strain in a time period of less than 190 h. In immobilized algae, where diffusion of H2 from the medium to the PhBR gas phase is not affected by mixing, the maximum rate and yield of H2 photoproduction occur in PhBRs with Vg.p./Vl.p above 7 or in a PhBR with smaller headspace, if the H2 is effectively removed from the medium by continuous flushing of the headspace with argon. These experiments in combination with studies of the direct inhibitory effect of high H2 concentrations in the PhBR headspace on H2 photoproduction activity in algal cultures clearly show that H2 photoproduction in algae depends significantly on the partial pressure of H2 (not O2 as previously thought) in the PhBR gas phase.  相似文献   

18.
In the present study, mesophilic CH4 production from grass silage in a one-stage process was compared with the combined thermophilic H2 and mesophilic CH4 production in a two-stage process. In addition, solid and liquid fractions separated from NaOH pre-treated grass silage were also used as substrates. Results showed that higher CH4 yield was obtained from grass silage in a two-stage process (467 ml g−1 volatile solids (VS)original) compared with a one-stage process (431 ml g−1 VSoriginal). Similarly, CH4 yield from solid fraction increased from 252 to 413 ml g−1 VSoriginal whereas CH4 yield from liquid fraction decreased from 82 to 60 ml g−1 VSoriginal in a two-stage compared to a one-stage process. NaOH pre-treatment increased combined H2 yield by 15% (from 5.54 to 6.46 ml g−1 VSoriginal). In contrast, NaOH pre-treatment decreased the combined CH4 yield by 23%. Compared to the energy value of CH4 yield obtained, the energy value of H2 yield remained low. According to this study, highest CH4 yield (495 ml g−1 VSoriginal) could be obtained, if grass silage was first pre-treated with NaOH, and the separated solid fraction was digested in a two-stage (thermophilic H2 and mesophilic CH4) process while the liquid fraction could be treated directly in a one-stage CH4 process.  相似文献   

19.
A two-phase anaerobic process to produce hydrogen and methane from swine manure was investigated, using pretreated sludge with heat, acid and alkali treatment as inoculum. The relative order of pretreatment methods of H2 productivity effectiveness and CH4 productivity effectiveness produced by the residua of the first phase was heat treatment > alkali treatment > acid treatment. When the inoculum sludge was heat-treated at 80°C for 30 min, the H2 and CH4 production rate was the highest of 36.6, 201.7 ml (g TS)added−1. There were significant correlations between biogas production and accumulation of acetic acid and butyric acids. When propionic acid and total VFA concentrations reached about 2850 mg L−1 and 10.0 g L−1, respectively, the average H2 production rate and H2 content decreased from 7.6 ml d−1(g VS)added−1 and 55.3% to 1.4 ml d−1(g VS)added−1 and 43.2%, respectively. The activity of methanogenic bacteria was inhibited to a significant extent when the total VFA concentration was above 10.0 g L−1, but this inhibitory effect weakened when the VFA concentration fell to 6200–8500 mg L−1. Correspondingly, average CH4 production rate increased from 4.0 ml d−1(g TS)added−1 to 12.5 ml d−1(g TS)added−1. Propionic acid was degraded rapidly only when acetic and butyric acid concentrations dropped to 2500 mg L−1 and 1000 mg L−1, respectively.  相似文献   

20.
The present study deals with the optimization of pretreatment conditions followed by thermophilic dark fermentative hydrogen production using Anabaena PCC 7120 as substrate by mixed microflora. Different airlift photobioreactors with ratio of area of downcomer and riser (Ad/Ar) in range of 0.4–3.2 were considered. Maximum biomass concentration of 1.63 g L−1 in 9 d under light intensity of 120 μE m−2 s−1 was observed at Ad/Ar of 1.6. The mixing time of the reactors was inversely proportional to Ad/Ar. Maximal H2 production was found to be 1600 mL L−1 upon pretreatment with amylase followed by thermophilic fermentation for 24 h compared to other methods like sonication (200 mL L−1), autoclave (600 mL L−1) and HCl treatment (1230 mL L−1). The decrease of pH from 6.5 to 5.0 during fermentation was due to the accumulation of volatile fatty acids. Amylase pretreatment gave higher reducible sugar content of 7.6 g L−1 as compare to other pretreatments. Thermophilic fermentation of pretreated Anabaena biomass by mixed bacterial culture was found suitable for H2 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号