首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以氢氧化物共沉淀法合成了Ni0.4Co0.2Mn0.4(OH)2前驱体,然后以Ni0.4Co0.2Mn0.4(OH)2和LiOH为原料,合成出了层状结构的锂离子电池正极材料LiNi0.4Co0.2Mn0.4O2.通过XRD、SEM和电化学测试对LiNi0.4Co0.2Mn0.4O2材料的结构、形貌及电化学性能进行了测试和表征.结果表明,800℃烧结12h合成的样品粒度大小分布比较均匀,以0.2C充放电,其首次放电容量为148mAh·g-1,循环30次后容量为136mAh·g-1.  相似文献   

2.
锂离子电池正极材料的研究进展   总被引:30,自引:2,他引:30  
介绍了不同正极材料的结构,电化学性能,研究现状,探讨了影响正极材料电化学性能的若干因素,比较了不同粉体合成方法的优缺点,说明了软化学法在锂离子电池正极材料制备中的优越性。  相似文献   

3.
制备了4.6V高截至电压下具有良好循环表现的AlF_3包覆改性LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料,通过XRD、SEM、交流阻抗(IMP)分析、充放电测试研究了不同用量AlF_3包覆LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料的结构与电化学性能.结果表明,AlF_3以非晶态形式包覆于LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2材料颗粒的表面.当包覆量<1.0%(摩尔分数,下同)时,AlF_3包覆导致轻微的初始容量损失,但显著抑制了高充电电压下膜阻抗和电荷传递阻抗的增加,较好改善了LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2材料的循环稳定性;当包覆量达到2.0%以上时,因AlF_3无电化学活性,使得初始容量损失过大.综合各方面表现,0.5%AlF_3包覆样品的电化学性能较佳,2.5~4.6V范围0.5C放电容量为182.2mAh·g~(-1),循环30次后容量保持率达88.1%.  相似文献   

4.
LiNi_(0.8)Co_(0.15)Al_(0.05)O_2正极材料具有容量高、价格低等优点,被认为是最具发展前景的锂离子电池正极材料之一.但LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料本身存在充放电过程中容量衰减较快、倍率性能差和储存性能差等缺陷,影响了其进一步发展.本文以LiNi_(0.8)Co_(0.15)Al_(0.05)O_2为研究对象,采用共沉淀法制备氢氧化物前驱体,在前驱体的表面包覆一层Ni_(1/3)Co_(1/3)Mn_(1/3)(OH)_2,制备成具有核壳结构的正极材料.通过XRD、SEM、EDX、电化学测试等分析手段,系统地研究了其结构、形貌以及电化学性能.分析表明:包覆改性后,LiNi_(0.8)Co_(0.15)Al_(0.05)O_2正极材料在0.1、0.2、0.5、1 C倍率下,材料的首次充放电比容量分别为167.6,160.1,150.4,138.5 mAh·g~(-1).由0.1到1C,包覆改性前后的正极材料的放电比容量衰减量由34.7 mAh·g~(-1)降为29.1 mAh·g~(-1),容量衰减百分比由22.1%降低到17.4%.综合性能分析认为,包覆改性后电化学性能有一定的改善.  相似文献   

5.
低温共熔盐0.434LiNO3-0.266LiOH·H2O-0.3CH3COOLi·2H2O在80~90℃范围实现很好的熔融态。采用这种低温共熔盐制备出了锂离子电池正极材料LiNi0.8Co0.2O2,XRD检测显示材料结晶度高,具有规整的层状α-NaFeO2结构,SEM扫描显示样品形貌均一,颗粒大小均匀。充放电测试表明,材料具有良好的电化学性能,在2.8~4.3V电压范围0.2C首次放电比容量为174.1mAh/g,循环20次后容量保留95%。  相似文献   

6.
橄榄石型结构LiFePO4因其结构特征和潜在的低成本而有望成为下一代锂离子电池正极材料。但是要使LiFePO4商业化必须开发出适于规模化生产高性能LiFePO4正极材料的工艺。本文在综合分析LiFePO4制备方法、导电性改善及填充密度提高途径的基础上,认为可借鉴Ni-MH电池正极材料球形Ni(OH)2制备技术发展经验,从理论上深入研究LiFePO4的形成过程,通过控制橄榄石型结构LiFePO4材料的结晶度、晶粒大小及形貌、元素分布、界面结构来满足高容量、大比功率及长循环寿命的要求。  相似文献   

7.
LiNi0.8Co0.2O2是很有希望取代LiCoO2的新一代锤离子电池正极材料.采用控制结晶法合成球形 α-Ni0.8Co0.2(OH)2为前驱体,与 LiOH·H2O混合,在700℃通O2热处理4h合成锂离子电池正极材料LiNi0.8Co02O2粉末.X光衍射分析表明合成的LiNi0.8Co0.2O2粉末结晶良好,具有规整的α-NaFeO2层状结构.扫描电镜分析表明粉末颗粒呈球形,粒径约8μm.粉末的流动性好,堆积密度高.充放电测试表明,合成的 LiNi0.8Co0.2O2正极材料具有优良的电化学性能:首次充电比容量为197mAh·g-1,放电比容量为174mAh·g-1,10次充放电循环后保持初始放电比容量的96.6%.  相似文献   

8.
锂离子电池正极材料LiNi1-yCoyO2的研制   总被引:2,自引:2,他引:0  
在高温增加氧气压力的条件下,通过固态反应合成了锂离子电池正极材料LiNi1-yCoyO2。讨论了合成条件对产物的电化学性能的影响,得到最佳的反应条件为:反应时间(8h;10h);氧气压力0.20MPa;反应温度800℃;反应物的摩尔比Li:Ni:Co为1.2:0.9:0.1。合成出具有晶型完整、电化学性能优良的LiNi0.9Co0.1O2产品,其放电容量达189.4mAh/g。实验结果表明,增加反应过程中氧气压力,对产物的结构及电化学性能有较大的影响。  相似文献   

9.
以NiSO_4·6H_2O、MnSO_4·H_2O、Co(NO_3)_3·6H_2O和LiNO_3为原料,通过草酸共沉淀法合成了锂离子电池正极材料LiNi_(0.4)Mn_(0.4) Co_(0.2)O_2。采用SEM、XRD和充放电试验对合成样品进行了表征。研究了合成温度、合成时间以及锂过量对合成产物结构的影响。实验结果表明,采用草酸共沉淀法合成LiNi_(0.4)Mn_(0.4)Co(0.2)O_2的最佳条件为:将共沉淀合成的掺钴Ni-Mn复合草酸盐与LiNO_3的混合物于850℃煅烧20h,锂过量10%(摩尔分数)。合成的LiNi_(0.4)Mn_(0.4)Co(0.2)O_2具有α-NaFeO_2型层状结构和良好的电化学性能,在2.5~4.35V的首次放电比容量达到158.7mAh/g,经20次循环后放电比容量稳定在145mAh/g左右。  相似文献   

10.
沈湘黔  占云  韩翀 《功能材料》2005,2(Z1):31-35
橄榄石型结构LiFePO4因其结构特征和潜在的低成本而有望成为下一代锂离子电池正极材料.但是要使LiFePO4商业化必须开发出适于规模化生产高性能LiFePO4正极材料的工艺.本文在综合分析LiFePO4制备方法、导电性改善及填充密度提高途径的基础上,认为可借鉴Ni-MH电池正极材料球形Ni(OH)2制备技术发展经验,从理论上深入研究LiFePO4的形成过程,通过控制橄榄石型结构LiFePO4材料的结晶度、晶粒大小及形貌、元素分布、界面结构来满足高容量、大比功率及长循环寿命的要求.  相似文献   

11.
汤宏伟  朱志红  常照荣  陈中军 《功能材料》2007,38(6):945-946,951
以二次干燥化学共沉淀法制得高密度前驱体Ni0.8Co0.2(OH)2,再与LiNO3混合经两个恒温阶段烧结(600℃恒温6h、800℃恒温24h)得到高密度LiNi0.8Co0.2O2.探讨了锂源、镍源、合成温度、合成时间等因素对产品的影响,从而优化了LiNi0.8Co0.2O2的合成工艺.所得非球形LiNi0.8Co0.2O2 粉末振实密度高达3.24g/cm3,大幅度地提高正极材料的体积比能量.X射线衍射分析表明合成的LiNi0.8Co0.2O2具有规整的层状NaFeO2结构,预示着材料具有良好的电化学性能.  相似文献   

12.
以自制(Ni0.4Co0.2Mn0.4)(OH)2为前驱体,采用高温固相法合成了锂离子电池正极材料LiNi0.4Co0.2-Mn0.4O2,采用粉末X射线衍射(XRD)、扫描电镜(SEM)对材料结构和形貌进行了表征,表明所得材料外观为球形,具有典型的α-NaFeO2层状结构,循环伏安、恒电流充放电测试表明,800℃下合成的材料具有最优的电化学性能,首次放电比容量达161.8mAh/g。  相似文献   

13.
采用氢氧化物共沉淀法合成LiNi0.8Co0.1Mn0.1O2正极材料,对产物进行X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)及电化学性能分析,结果表明,LiNi0.8Co0.1Mn0.1O2在0.5C下的循环性能和倍率性能较差,100次循环后,Li+的嵌入/脱嵌的界面阻抗(Rf)和电荷转移阻抗(Rct)迅速增加,极化增大。为改善其电化学性能,以尿素为沉淀剂,采用均匀沉淀法,在LiNi0.8Co0.1Mn0.1O2表面包覆不同比例Al2O3包覆层,研究其对LiNi0.8-Co0.1Mn0.1O2电化学性能的影响。在所有的样品中,1%Al2O3包覆LiNi0.8Co0.1Mn0.1O2具有最优的六方晶型α-NaFeO2层状结构和最低的阳离子混排度。SEM和TEM图表明无定形透明多孔Al2O3包覆层均匀地包覆在LiNi0.8Co0.1Mn0.1O2表面。与纯相相比,1%Al2O3包覆LiNi0.8Co0.1Mn0.1O2具有较好的电化学性能,包括相对较高的首次放电容量189.56mAh·g-1、最高的首次库伦效率87.95%、较好的循环性能和倍率性能。循环伏安(CV)和电化学阻抗(EIS)结果表明,LiNi0.8Co0.1Mn0.1O2电化学性能得到提高是由于Al2O3包覆层可以抑制电解液与正极副反应的发生,从而减小循环过程中界面阻抗值和电荷转移阻抗值的增大。  相似文献   

14.
高镍正极材料由于较高的比容量和性价比而受到关注, 但在循环过程中稳定性较差且安全性能不佳, 限制了其更广泛的应用。本研究结合微波辅助共沉淀与高温固相法制备高镍正极LiNi0.8Mn0.2O2二元材料, 再掺入不同比例的Co、Al对材料进行改性研究。结果表明, 改性后的材料性能明显改善, 特别是LiNi0.8Mn0.1Co0.08Al0.02O2在2.75~4.35 V、1C下循环100次后容量保持率达到91.39%, 在5C下放电比容量仍有160.03 mAh∙g-1, 并且掺杂后的材料具有较高的热稳定性, 安全性得到提升。其优异的循环保持率归因于Co、Al较好地抑制了循环过程中H2→H3相变的不可逆性对材料结构稳定性的破坏, 以及较弱的电极反应极化, 使电荷转移电阻降低。  相似文献   

15.
为改善LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的电化学性能,采用自制的磷酸铁纳米悬浮液,通过共沉淀法在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料表面包覆纳米磷酸铁。应用XRD,TG-DTA,TEM等手段表征制备的磷酸铁的结构,形貌和液相状态;通过XRD,SEM,EDS,TEM,ICP,恒流充放电、循环伏安、交流阻抗表征制备的包覆材料的结构、形貌及电化学性能。研究烧结温度和包覆量对LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料电化学性能的影响。结果表明,热处理温度为400℃,2%(质量分数,下同)磷酸铁包覆能显著地改善LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的循环性能和倍率性能。循环伏安和交流阻抗结果显示,包覆磷酸铁后改善了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的可逆性和动力学性能。ICP测试结果表明,磷酸铁包覆层能够有效地降低电解液对正极材料的溶解与侵蚀,稳定其层状结构,从而提高正极材料的电化学性能。  相似文献   

16.
钟伟攀  陆雷  杨晖 《功能材料》2012,43(11):1425-1430
采用共沉淀-高温固相烧结法,控制合成条件,以不同的沉淀剂(Na2CO3、NaOH)制备出正极材料。通过XRD、SEM及电池测试系统对不同沉淀剂制备的正极材料进行结构、形貌和电化学性能的表征,对比两者存在的优缺点。研究结果表明,以NaOH为沉淀剂制备的正极材料有更好的层状结构,形貌也更好,充放电性能和倍率性能也较好。其首次放电比容量达到了187.9mAh/g,最高可达196.2mAh/g,50次充放电循环后,容量保持率为81.6%;以Na2CO3为沉淀剂制备的正极材料的放电比容量较低,但容量保持率较高,为85.3%。  相似文献   

17.
以提高锂离子电池正极材料LiNi0.4Co0.2Mn0.4O2的循环性能为目的,采用熔融浸渍法制备了Al2O3和ZnO表面包覆的LiNi0.4Co0.2Mn0.4O2正极材料.微观组织结构分析结果表明,包覆后LiNi0.4Co0.2Mn0.4O2颗粒表面形成了一层厚度不均匀的纳米氧化物.电化学测试表明,ZnO和Al2O3包覆提高了材料的循环稳定性,在1C恒流充放电循环50次后容量保持率由包覆前的79.7%分别提高到88.4%和100%.  相似文献   

18.
采用冷冻干燥技术成功合成了层状锂离子电池正极材料LiNi0.8Co0.2O2,研究了不同煅烧温度对产物结构、微观形貌以及性能的影响.利用TG-DTA分析、X射线衍射(XRD)、场发射扫描电镜(FESEM)和激光粒度分析仪对前驱体和煅烧样品的热反应、晶体结构、微观形貌和粒度分布等进行了表征.结果表明,煅烧温度对LiNi0.8Co0.2O2晶体结构及材料性能有较大影响.750℃×5h的煅烧条件下制得的LiNi0.8Co0.2O2粉具有纳米级尺寸和窄的粒度分布,该样品的(003)晶面衍射峰强度与(104)晶面衍射峰的强度比I(003)/I(104)为1.51.晶格参数显示制得的LiNi0.8Co0.2O2样品用作锂离子电池的电极,可能会显示出良好的电化学性能.  相似文献   

19.
利用低共熔混合物LiNO3-LiOH为锂盐,与高密度前驱体Ni0.8CO0.2(OH)2混合烧结制备出了高密度锂离子电池正极材料LiNi0.8Co0.2O2.探讨了合成温度、合成时间等因素对产品的影响.X射线衍射分析表明合成的LiNi0.8Co0.2O2具有规整的层状NaFeO2结构,充放电测试表明在3.0~4.3V的电压范围内,首次放电比容量可达168mAh/g,充放电效率为95%.结果表明采用该工艺可以制备出电化学性能良好的高密度LiNi0.8Co0.2O2正极材料.  相似文献   

20.
Nickel-rich phases of the solid solutions, LiNi1−yCoyO2 (y=0.1, 0.2, 0.3), were synthesized by a sol–gel method with citric acid as a chelating agent. Various initial conditions were studied in order to find the optimal conditions for the synthesis of LiNi0.8Co0.2O2. The discharge capacity for the compound synthesized under an optimal synthesis condition of 800 °C for 12 h was found to be 187 mAh g−1 in the 1st cycle and it was 176 mAh g−1 after 10 cycles. The other nickel-rich phases, namely, LiNi0.9Co0.1O2 and LiNi0.7Co0.3O2 showed 1st-cycle discharge capacities of 144 and 163 mAh g−1, respectively. The corresponding capacity values were 140 and 159 mAh g−1 in the 10th cycle. Excess lithium stoichiometric phases, LixNi0.8Co0.2O2, where x=1.10, 1.15 and 1.20, resulted in decreased capacity. Structural and electrochemical properties of the synthesized compounds were compared with those of a commercial LiNi0.8Co0.2O2 sample. The effect of calcination temperature and duration, excess lithium stoichiometry and divalent strontium doping in LiNi0.8Co0.2O2 are described. Doping with strontium improved both the capacity and cycling performance of LiNi0.8Co0.2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号