共查询到16条相似文献,搜索用时 78 毫秒
1.
图像配准是医学图像处理中的关键技术。文中提出一种自适应差分算法(Difference Algorithm,DE)和Powell算法相结合的多分辨率医学图像配准方法,其不仅可以克服Powell算法依赖初始点的缺点,还可以降低陷入局部极值的几率。首先,对源图像进行多分辨处理,获得包括源图像在内的三层图像;然后,在低分辨率图像上使用自适应DE算法进行全局变换参数的搜索,获得的变换参数作为Powell算法的初始点;最后,在高分辨率图像及源图像上使用Powell算法进行配准。与传统实验相比,该方法具有更高的精确度,能够有效避免局部收敛问题。 相似文献
2.
《计算机应用与软件》2014,(7)
图像配准一直是图像研究领域的热点话题,互信息的配准方法由于其精度高、鲁棒性强等特点,成为图像配准中的常用方法。但其目标函数存在局部极值问题。针对这个问题,提出一种量子行为的粒子群优化算法(QPSO)和Powell法相结合的多分辨率搜索优化算法。QPSO参数个数少,其每一个迭代步的取样空间能覆盖整个解空间,能保证算法的全局收敛,因此可以有效地解决Powell算法的缺点。该算法将量子行为的粒子群优化算法(QPSO)与Powell法结合起来对二维的MRI图像进行配准。实验结果表明,该方法能够有效地克服互信息函数的局部极值问题,并提高了配准精度和速度。 相似文献
3.
针对现有医学图像配准算法精度较差、易陷入局部极值和收敛速度慢的问题,结合多分辨率分析,提出改进头脑风暴优化(MBSO)算法与Powell算法结合的图像配准算法。MBSO算法通过改变个体生成方式调节参与局部和全局搜索的个体比例,应用可变步长加强搜索能力,达到跳出局部最优和加速收敛的目的。首先,在低分辨率层利用MBSO算法进行全局搜索;然后,将搜索结果作为Powell算法的初始点在高分辨率层进一步搜索;最后,在原始图像层利用Powell算法搜索并定位全局最优值。与粒子群优化(PSO)算法、蚁群优化(ACO)算法、遗传算法(GA)与Powell算法结合算法相比,所提算法平均均方根误差分别减小了20.89%、30.46%和18.54%,平均配准时间分别缩短了17.86%、27.05%和26.60%,并且达到了100%的成功率。实验结果表明,所提算法具有很强的鲁棒性,能够快速、准确完成医学图像配准任务。 相似文献
4.
基于一种改进的Powell算法和互信息的医学图像配准方法 总被引:1,自引:0,他引:1
Powell是一种直接法,不用计算目标函数的梯度,仅通过比较目标函数的数值大小来移动迭代点就可求出极值。但Powell算法对参数的初始值有很大的依赖性,在图像配准的优化过程中易陷入局部最优,使得优化结果很大程度上依赖于初始值,会得到错误的配准参数,从而影响配准效果。为解决这一问题,使用粒子群优化算法(PSO)求取Powell算法的初始值。经检验,此方法克服了Powell算法的缺点,大大提高了配准精度。 相似文献
5.
图像配准中确定性扰动PV插值算法 总被引:4,自引:0,他引:4
基于互信息的图像配准方法具有自动化程度高、配准精度高等优点,已被广泛应用于医学图像的配准,图像插值是图像配准过程中一个十分关键的步骤,详细分析了各类插值算法的优缺点,提出了一种确定性扰动PV插值算法,在利用PV插值时考虑了随机扰动涉及到扰动点周围9个网格点,并且通过扰动确定化计算PV插值法的权值.实验结果表明:该算法能够避免网格点和非网格点上的局部极值,有效地改善了基于互信息的目标函数的性能,使函数更加平滑。 相似文献
6.
对互信息配准法进行算法改进. 在互信息基础上结合形态学梯度作为新的图像配准测度, 不仅考虑所有体素信息, 而且有效结合像素在空间位置的相互关系. 将粒子群优化 (Particle swarm optimization, PSO) 算法这种全局寻优算法和 Powell 这一局部寻优算法相结合, 前者的配准结果为后者的算法优化提供了非常有效的初始点, 优化时间大为减少. 借鉴小波变换中多分辨率的思想, 在低分辨率图像中粗略配准后, 上升到高分辨率图像上进一步细化配准结果, 增加算法鲁棒性. 实验结果证明, 本文算法效果良好, 寻优过程在数分钟内完成, 能够满足诊断和科研的实时性要求. 相似文献
7.
针对基于互信息图像配准的局部极值问题,提出一种基于Powell算法与改进遗传算法结合的医学图像配准方法。该方法对标准遗传算法存在的收敛速度慢、易早熟、有可能导致误配的缺陷,提出了相应的改进策略; 采用Logistic混沌映射生成迭代过程中的个体; 运用基于小波变换的多分辨率分析策略,采用混合优化算法在图像的最低分辨率层进行全局优化,以全局最优值,结合Powell算法完成医学图像配准。实验结果表明,所提方法可有效避免优化算子陷入局部极值,并提高了配准速度; 相对于纯Powell方法和未改进的遗传算法,配准的精确度和性能更好。 相似文献
8.
针对Powell算法在搜索过程中具有初始值依赖和容易陷入局部极值的问题,提出了使用遗传算法改进Powell算法在图像配准中的应用。利用图像的归一化互信息作为遗传算法的适应度,全局、并行搜索图像配准参数作为Powell算法的初始值,再使用Powell算法局部逼近近似最优解。实验结果证明,改进后的Powell算法能有效地减少图像配准的时间,提高配准的精度,精度能达到亚像素级。 相似文献
9.
基于混合策略的多分辨率算法是当前3D医学图像刚体配准中普遍采用的方法,不过其仅仅是优化算法的混合。通过研究不同分辨率对一阶互信息(常称为互信息)和二阶互信息配准的影响,在二级多分辨率策略的配准中,各级采用相对更适合的相似性测度,提出了混合优化算法和混合测度的改进算法。实验表明,改进算法在配准精度上达到了亚体素级,且明显优于基于单一测度的算法,在配准速度上远远快于基于二阶互信息单一测度的算法,略慢于基于一阶互信息单一测度的算法。 相似文献
10.
11.
粒子群与改进的鲍威尔算法相结合的多分辨率三维医学图像配准 总被引:1,自引:0,他引:1
为克服传统基于互信息的多模医学图像配准算法容易陷入局部最优的问题,提出了一种改进的多分辨率三维医学图像配准算法.该算法通过高斯滤波将三维医学图像进行多尺度化,形成多分辨率图像金字塔,以Mattes互信息作为配准框架的相似性测度.在图像金字塔的低分辨率层使用粒子群优化算法进行全局变换参数的搜索,然后以全局变换参数作为高分辨率层配准的初始参数,并以鲍威尔优化算法进行优化,完成最终的三维医学图像配准.实验结果表明,改进的算法不仅使待配准两幅图像空间位置对齐,而且较传统互信息算法提高了配准精度,鲁棒性更强,有效地解决了基于互信息的配准算法陷入局部最优的可能. 相似文献
12.
一种基于混合优化算法的医学图像配准方法 总被引:3,自引:2,他引:3
为了实现脑部多模医学图像配准,提出了一种基于混合优化算法的配准方法。该算法采用遗传算法中的杂交思想改进了混沌粒子群算法,并用最大互信息测度对脑部MRI及CT图像进行配准。该改进算法可有效地避免优化算子陷入局部极值,而且算法收敛快。实验结果证明了提出的基于遗传思想的改进混沌粒子群优化算法对多模医学图像配准具有有效性。 相似文献
13.
基于多尺度卡尔曼滤波的医学图像配准算法 总被引:1,自引:0,他引:1
提出了一种新的基于主成分分析和多尺度卡尔曼滤波的医学图像配准算法.利用主成分分析的方法求出两幅图像的主轴和质心,从而计算出图像间的旋转角度;利用高斯金字塔分解构造了一种自适应的卡尔曼滤波器用来提高算法的鲁棒性.对模拟图像和真实图像进行了实验,实验结果表明此方法能准确,快速地处理图像刚性配准问题. 相似文献
14.
为满足医学图像配准对多分辨率,高配准率,低时耗率的高要求,提出了一种新颖的基于多尺度Harris角点方根-算术均值距离(SAM)的配准算法。该算法通过对图像进行小波多尺度积边缘检测和多尺度Harris角点检测,首先得到了估计变换参数;然后利用角点间的SAM作为相似性测度函数来获得最佳匹配点对,并通过最小二乘得到最终配准参数。实验表明,算法可实现含噪声图像以及不同分辨率的多模医学图像的配准,由于算法只对角点匹配,无须最优搜索,从而不仅大大减少了计算量,而且避免了陷入局部极值的情况。最后,通过3类实验验证了算法的可行性和鲁棒性。 相似文献
15.
16.
P. V. Lukashevich B. A. Zalesky S. V. Ablameyko 《Pattern Recognition and Image Analysis》2011,21(3):519-521
A quick method of 2D global registration of CT images in different series of studies of one patient is suggested in this work. The distinguishing feature of this approach is the use of image registration based on the SURF (Speeded Up Robust Features) detector, which has proved efficient in computer vision. 相似文献