首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study evaluated the efficacy of integrated ultraviolet‐C light (UVC) and low‐dose gamma irradiation treatments to inactivate mixed strains of Escherichia coli O157:H7 and Salmonella enterica on inoculated whole grape tomatoes. A mixed bacterial cocktail composed of a 3 strain mixture of E. coli O157:H7 (C9490, E02128, and F00475) and a 3 serotype mixture of S. enterica (S. Montevideo G4639, S. Newport H1275, and S. Stanley H0558) was used based on their association with produce‐related outbreaks. Spot inoculation (50 to 100 μmL) on tomato surfaces was performed to achieve a population of appropriately 107–8 CFU/tomato. Inoculated tomatoes were subjected to UVC (253.7 nm) dose of 0.6 kJ/m2 followed by 4 different low doses of gamma irradiations (0.1 kGy, 0.25 kGy, 0.5 kGy, 0.75 kGy). The fate of background microflora (mesophilic aerobic) including mold and yeast counts were also determined during storage at 5 °C over 21 d. Integrated treatment significantly (P < 0.05) reduced the population of target pathogens. Results indicate about 3.4 ± 0.3 and 3.0 ± 0.1 log CFU reduction of E. coli O157:H7 and S. enterica, respectively, per tomato with UVC (0.6 kJ/m2) and 0.25 kGy irradiation. More than a 4 log and higher reduction (>5 log) per fruit was accomplished by combined UVC treatment with 0.5 kGy and 0.75 kGy irradiation, respectively, for all tested pathogens. Furthermore, the combined treatment significantly (P < 0.05) reduced the native microflora compared to the control during storage. The data suggest efficacious treatment strategy for produce indicating 5 or higher log reduction which is consistent with the recommendations of the Natl. Advisory Committee on Microbiological Criteria for Foods.  相似文献   

2.
Cig kofte is a traditional Turkish food containing raw ground meat. Samples inoculated with Escherichia coli O157:H7 were irradiated at 0.5–6 kGy with a 60Co source and stored at 4 and 25 °C. Total aerobic mesophilic count decreased with increasing irradiation doses, D10 value was 0.83 kGy. Escherichia coli O157:H7 count decreased from 5.1 log10 CFU g?1 to an undetectable level (<1 log10 CFU g?1) after 1‐day storage at 4 °C following irradiation at 2 kGy, D10‐value was 0.29 kGy. Irradiation doses up to 2 kGy did not affect sensory quality after 1 day. There was colour loss in samples irradiated at 2 kGy or above and stored for longer periods. Storage of the irradiated products at abused temperature must be avoided for safety assurance. Irradiation at 2 kGy has a great potential for extending the shelf‐life of cig kofte and assuring safety by decreasing the number of E. coli O157:H7 and other bacteria, but further studies with suitable package designs are needed to decrease quality degradation during extended storage.  相似文献   

3.
The aim of this study was to determine the total phenolic contents and antibacterial effects of grape pomace extracts (cultivars Emir and Kalecik karasi) against 14 bacteria, and the effects of the extracts on the growth and survival of two of the bacteria during storage. The total phenolic contents of grape pomace of Emir and Kalecik karasi cultivars extracted with acetone/water/acetic acid (90:9.5:0.5) were 68.77 and 96.25 mg GAE g?1, respectively. The agar well diffusion method was used to test the antibacterial activity of the extracts at 1, 2.5, 5, 10 and 20% (w/v) concentrations in methanol on spoilage and pathogenic bacteria including Aeromonas hydrophila, Bacillus cereus, Enterobacter aerogenes, Enterococcus faecalis, Escherichia coli, Escherichia coli O157:H7. Mycobacterium smegmatis, Proteus vulgaris, Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella enteritidis, Salmonella typhimurium, Staphylococcus aureus and Yersinia enterocolitica. All the bacteria tested were inhibited by extract concentrations of 2.5, 5, 10 and 20%, except for Y enterocolitica which was not inhibited by the 2.5% concentration. However, pomace extracts at 1% concentration had no antibacterial activity against some of the bacteria. According to the agar well diffusion method, E coli O157:H7 was the most sensitive of the bacteria. Generally, using the serial dilution method, while the extracts at 0.5% concentration had bacteriostatic activities on E coli O157:H7 and S aureus, the extracts appeared to have bactericidal effects at 1 and 2.5% concentrations. In accordance with this method, S aureus was more sensitive than E coli O157:H7 to the extracts. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
In this study, Chinese-style sausages were subjected to air, vacuum or nitrogen packaging and stored at either 5 or 25°C. The survival characteristics of Escherichia coli O157: H7 during the storage period were determined. Results revealed that, when stored at 5°C, the number of viable E coli O157: H7 in sausages decreased slowly as the storage period extended, regardless of packaging methods. E coli O157: H7 in sausages decreased from an initial population of ca 5·97 log CFU g−1 to ca 4·42–4·81 log CFU g−1 after 40 days of storage at 5°C. It was also found that viable cells of E coli O157: H7 declined more rapidly in sausage stored at 25°C than at 5°C. No viable E coli O157: H7 was detected in either vacuum-packed or nitrogen-packed sausage after 40 days of storage at 25°C. On the other hand, the population of E coli O157: H7 reduced to non-detectable levels in air-packed sausages after 20 days of storage. Refrigerated storage and vacuum or nitrogen packaging provided conditions that slowed down the death rate of E coli O157: H7 in sausage. Furthermore, it was noted that, among the curing agents tested, NaCl exerted the most significant lethal effect on E coli O157: H7 in sausage during the storage period. © 1998 Society of Chemical Industry.  相似文献   

5.
Destruction of Escherichia coli O157:H7 in apple cider treated with fumaric acid and sodium benzoate (0.15% and 0.05% w/v, respectively) was determined under pH and storage temperatures that commonly occur in apple cider. At 5°C storage, while destruction of E. coli O157:H7 in the presence of preservatives increased with time, there was little decline in E. coli O157:H7 populations in the absence of the preservatives. Increasing storage temperatures to 15°C and 25°C significantly increased the rate of destruction of E. coli O157:H7 in cider with the preservatives (P < 0.05). Increasing the pH of cider (from 3.2 to 4.7) decreased the rate of destruction of E. coli O157:H7.  相似文献   

6.

ABSTRACT

This study evaluated whether inoculated (none, 1, 5 log colony‐forming units [cfu]/cm2) Escherichia coli O157:H7 would result in detection of autoinducer (AI)‐2‐like activity on beef. Inoculated fresh beef, containing low (LNB) or high (HNB) initial levels of natural flora, was analyzed for bacterial populations and AI‐2‐like activity during aerobic or vacuum‐packaged storage (4, 10, 25C). As expected, no growth of E. coli O157:H7 was detected at 4C, while at 10C, growth was detected only on LNB samples stored aerobically; AI‐2‐like activity was minimal (P ≥ 0.05) at both temperatures. E. coli O157:H7 showed more growth in LNB than HNB, and in aerobically than vacuum‐packaged samples inoculated with 1 log cfu/cm2 of the pathogen during storage at 25C. AI‐2‐like activity was generally higher in LNB than HNB samples stored aerobically at 25C, while no significant AI‐2‐like activity was detected in samples stored in vacuum packages. The results indicated that E. coli O157:H7 may exhibit AI‐2‐like activity on aerobically stored beef in the presence of lower initial levels of natural flora, and at temperatures allowing prolific growth of the pathogen. Thus, AI‐2‐based quorum‐sensing of E. coli O157:H7 may not be of importance in beef stored at low temperatures.

PRACTICAL APPLICATIONS

This study presents evidence that Escherichia coli O157:H7 showed autoinducer (AI)‐2 activity and involved in quorum‐sensing on fresh beefcontaining low initial levels of natural flora during aerobic storage at abusive storage temperatures. Thus, AI‐2‐based quorum‐sensing of E. coli O157:H7 may not be important in beef stored at recommended low temperatures.  相似文献   

7.
Abstract: Meatballs were prepared by mixing ground beef and spices and inoculated with E. coli O157:H7, L. monocytogenes, and S. enteritidis before packaged in modified atmosphere (3% O2+ 50% CO2+ 47% N2) or aerobic conditions. The packaged samples were irradiated at 0.75, 1.5, and 3 kGy doses and stored at 4 °C for 21 d. Survival of the pathogens, total plate count, lipid oxidation, color change, and sensory quality were analyzed during storage. Irradiation at 3 kGy inactivated all the inoculated (approximately 106 CFU/g) S. enteritidis and L. monocytogenes cells in the samples. The inoculated (approximately 106 CFU/g) E. coli O157:H7 cells were totally inactivated by 1.5 kGy irradiation. D10‐values for E. coli O157:H7, S. enteritidis, and L. monocytogenes were 0.24, 0.43, and 0.41 kGy in MAP and 0.22, 0.39, and 0.39 kGy in aerobic packages, respectively. Irradiation at 1.5 and 3 kGy resulted in 0.13 and 0.36 mg MDA/kg increase in 2‐thiobarbituric acid‐reactive substances (TBARS) reaching 1.02 and 1.49 MDA/kg, respectively, on day 1. Irradiation also caused significant loss of color and sensory quality in aerobic packages. However, MAP effectively inhibited the irradiation‐induced quality degradations during 21‐d storage. Thus, combining irradiation (3 kGy) and MAP (3% O2+ 50% CO2+ 47% N2) controlled the safety risk due to the potential pathogens and maintained qualities of meatballs during 21‐d refrigerated storage. Practical Application: Combined use of gamma irradiation and modified atmosphere packaging (MAP) can maintain quality and safety of seasoned ground beef (meatball). Seasoned ground beef can be irradiated at 3 kGy and packaged in MAP with 3% O2+ 50% CO2+ 47% N2 gas mixture in a high barrier packaging materials. These treatments can significantly decrease risk due to potential pathogens including E. coli O157:H7, L. monocytogenes, and S. enteritidis in the product. The MAP would reduce the undesirable effects of irradiation on quality, and extend the shelf life of the product for up to 21 d at 3 °C.  相似文献   

8.
The survival of Staphylococcus aureus (St. aureus), Bacillus cereus, Yersinia enterocolitica, Eschericia coli O157:H7, Shigella flexneri (Sh. flexneri) and Salmonella enteritidis (Sa. enteritidis) in urfa cheese (a traditional white‐brined Turkish cheese) which was stored in brine concentrations varying from 12.5 to 17.5% (wt/v) was tested. Two sets of cheeses were made, namely scalded and unscalded cheeses (scalding was done by heating at 95 °C for 3 min). The variations in the counts of pathogenic colonies were monitored throughout a 90‐day storage period at <10 °C. Results indicated that scalding caused statistically significant reductions in the colony counts of Y. enterocolitica, E. coli O157:H7, Sh. flexneri and Sa. enteritidis during the early periods of storage. In contrast, St. aureus and B. cereus were not generally affected by scalding and brine concentrations, although B. cereus in 17.5% (wt/v) brine was affected. In the unscalded cheeses, 12.5 and 15.0% (wt/v) brine concentrations seemed to be insufficient to eradicate the pathogenic organisms examined.  相似文献   

9.
The effects of pH, depth of food medium and ultraviolet (UV) light dose on the inactivation of Escherichia coli O157:H7 in UV‐opaque products such as apple juice (pH 3.5) and egg white (pH 9.1) were investigated. The applied UV dose ranged from 0 to 6.5 mW min cm?2, while the depths of the medium were 1, 3.5, 5 and 10 mm. The pH of the medium did not affect the inactivation of E coli O157:H7, since similar inactivation characteristics were obtained for both apple juice and liquid egg white. As expected, decreasing the depth of the medium increased the inactivation of E coli O157:H7. More than a 5‐log reduction was obtained when the fluid depth and UV dose were 1 mm and 6.5 mW min cm?2 respectively. However, less than a 1‐log reduction was obtained when the fluid depth was 10 mm. A two‐phase kinetic model was used to model the inactivation of E coli O157:H7. This model indicated that at higher fluid depths the inactivation rate was controlled by the second, slower inactivation phase, resulting in a lower overall inactivation. The visual appearance of the treated apple juice and egg white did not show any discolouration changes during 4 weeks of storage at ambient temperature (25 °C). Copyright © 2003 Society of Chemical Industry  相似文献   

10.
ABSTRACT: The effects of low-dose irradiation (0.25 to 2 kGy) and postirradiation storage (at 4 °C) on microbial and visual quality, color values (L*, a*, b*, chroma, and hue [°]), and chlorophyll content (Chl a, Chl b, and total Chl) of fresh mint were evaluated. Samples inoculated with E. coli O157:H7, Salmonella, and MS2 bacteriophage were irradiated and evaluated. E. coli O157:H7 and Salmonella populations were reduced by 2 to 2.4, 3.5, and 5.8 log CFU/g, respectively, 1 d after treatment with 0.25, 0.60, and 1 kGy, respectively, and were completely eliminated at 2 kGy. None of the irradiation doses (P < 0.0001) reduced MS2 bacteriophage populations by more than 0.60 log PFU/g. Irradiation doses did not affect visual quality and samples remained of excellent to good quality (score 7.75 to 9) for up to 9 d of storage. Irradiation at 0.60, 1, and 2 kGy increased (P < 0.0001) Chl a, Chl b, and total Chl. Both total Chl and Chl a decreased significantly after 3 d of storage. Significant decreases in Chl b were not observed until day 12 of storage. Color values (L*, b*, and chroma) were not significantly different until day 6 of storage and hue (°) remained unchanged (179°) for the entire storage period of 12 d. Overall, irradiation did not change L*, a*, b*, or chroma. These results demonstrate that irradiation of fresh mint at 2 kGy has the potential to improve its microbial quality and extend its shelf life without compromising its visual quality and color. Practical Application: Mints and other raw fresh herbs are widely used for flavoring as well as garnish in a variety of dishes without further cooking. However, mint is one considered as one of the high-risk herbs when it comes to microbial contamination. We have evaluated the use of gamma irradiation treatment at very low doses ranging from 0 to 2 kGy to eliminate seeded Salmonella spp, E. coli O157:H7, and MS2 bacteriophage, a surrogate of hepatitis A virus. We found that low-dose irradiation (1.0 to 2.0 kGy) appears to be a promising method for improving the microbiological quality of fresh mint without compromising its visual and color attributes. This method may be applied to many popular fresh culinary herbs that are commonly used as garnishes in Asian cuisine.  相似文献   

11.
Trisodium phosphate (TSP) was evaluated for removing attached E. coli O157:H7 and S. typhimurium from beef surfaces using microbiological plating and scanning electron microscopy (SEM). Both fat and fascia surfaces were exposed to 109 CFU/mL of each inoculum for 15 min and rinsed with 10% TSP solution (10°C) for 15 sec. Compared to controls, the level of E. coli O157:H7 was 1.35 and 0.92-logs lower on TSP-treated fat and fascia surfaces, respectively by plating. .S. typhimurium was 0.91- and 0.51-logs lower, respectively. By SEM, TSP-treated fabcia surfaces showed 1.39-log and 0.86-log reductions in E. coli O157:H7 and S. typhimurium, respectively. Overall, TSP was more effective on removing E. coli O157:H7 than S. typhimutium and more efficient in removing both bacteria from fat surfaces than from fascia.  相似文献   

12.
Cooked pork chops (pumped with salt/polyphosphate brine or untreated) and cured hams were inoculated with Listeria monocytogenes and Salmonella typhimurium. The samples were irradiated at low (0.75 to 0.90 kGy) or medium doses (1.8 to 2.0 kGy), and each dose was delivered at either a low (2.5 M/min conveyor speed) or high (5.4 M/min) dose rate. Low-dose irradiation reduced L. monocytogenes by more than 2 log and S. typhimurium by 1 to 3 log. Pathogen populations and total plate counts (TPC) were reduced to undetectable levels by medium doses. No meat quality attributes were affected, and no dose rate effect was observed. Nitrite reduced (P < 0.05) both pathogens and TPC during 7°C storage in ham, especially when combined with low-dose irradiation.  相似文献   

13.
The effects of different cooking processes (grilling, oven and microwave cooking) on the microbial flora of the raw meatballs inoculated with E. coli O157:H7 at the level 2×104 cfu/ml were investigated. The meatballs were stored at 4 °C. The flora of the raw meatballs is described in this paper. While Salmonella was found in each sample, none of the samples contained C. perfringens or E. coli O157:H7. The processes of grill cooking or microwave cooking decreased the microbial flora by 2–3 log cycles. E. coli O157:H7 was completely destroyed by all cooking methods. E. coli O157:H7 count of the raw meatball samples increased for 1.5 log cycles at the end of storage compared to beginning.  相似文献   

14.
Reduction of Pathogens Using Hot Water and Lactic Acid on Beef Trimmings   总被引:1,自引:0,他引:1  
Beef trimmings from young or mature beef cattle were obtained commercially. Trimmings within age type then were inoculated with about 6.0 log10 CFU/mL of rifampicin-resistant. Escherichia coli O157:H7 and Salmonella typhimurium (ATCC 13311) were randomly assigned to 1 of 3 treatments (control; 95 °C hot water alone, or with 2% L-lactic acid). After treatment, trimmings were ground, held for 0, 14, 28, or 42 d in chub packages at 4 °C, and total aerobic plat counts, E. coli O157:H7, and S. typhimurium counts were determined. Non-inoculated trimmings were also treated and samples were evaluated for pH, fat, moisture, TBA, meat color by colorimeter, and meat color, and odor by trained sensory panels. Trimmings treated with water or hot water plus lactic acid reduced levels of E. coli O157:H7 and S. typhimurium and tended to be darker after treatment. Meat odor in the final product was not affected by treatment.  相似文献   

15.
Abstract: Escherichia coli O157:H7 contamination of leafy green vegetables is an ongoing concern for consumers. Biofilm-associated pathogens are relatively resistant to chemical treatments, but little is known about their response to irradiation. Leaves of Romaine lettuce and baby spinach were dip inoculated with E. coli O157:H7 and stored at 4 °C for various times (0, 24, 48, 72 h) to allow biofilms to form. After each time, leaves were treated with either a 3-min wash with a sodium hypochlorite solution (0, 300, or 600 ppm) or increasing doses of irradiation (0, 0.25, 0.5, 0.75, or 1 kGy). Viable bacteria were recovered and enumerated. Chlorine washes were generally only moderately effective, and resulted in maximal reductions of 1.3 log CFU/g for baby spinach and 1.8 log CFU/g for Romaine. Increasing time in storage prior to chemical treatment had no effect on spinach, and had an inconsistent effect on 600 ppm applied to Romaine. Allowing time for formation of biofilm-like aggregations reduced the efficacy of irradiation. D10 values (the dose required for a 1 log reduction) significantly increased with increasing storage time, up to 48 h postinoculation. From 0 h of storage, D10 increased from 0.19 kGy to a maximum of 0.40 to 0.43 kGy for Romaine and 0.52 to 0.54 kGy for spinach. SEM showed developing biofilms on both types of leaves during storage. Bacterial colonization of the stomata was extensive on spinach, but not on Romaine. These results indicate that the protection of bacteria on the leaf surface by biofilm formation and stomatal colonization can reduce the antimicrobial efficacy of irradiation on leafy green vegetables. Practical Application: Before incorporating irradiation into the overall GMP/GHP chain, a packer or processor of leafy green vegetables must determine at what stage of processing and shipping the irradiation should take place. As a penetrating process, irradiation is best applied as a postpackaging intervention. Time in refrigerated storage between packaging and processing may alter the antimicrobial efficacy of irradiation. Irradiation on a commercial scale should include efforts to minimize the time delay between final packaging and irradiation of leafy vegetables.  相似文献   

16.
The survival of E. coli O157:H7 in fermenting foods and its prolonged survival in refrigerated fermented foods is documented. This prompted the study to evaluate survival of E. coli O157:H7 during the fermentation of Datta and Awaze, traditional Ethiopian condiments. Datta was prepared by wet milling a variety of spices along with green or red chilli and fermenting it by lactic acid bacteria. Awaze is a slurry made of red pepper, garlic and ginger to which various other spices were added and fermented by lactic acid bacteria (LAB) and yeasts. The Datta or Awaze slurry was separately inoculated with three strains of E. coli O157:H7 and the fermentation was allowed to proceed at ambient (20–25°C) temperatures for 7 days. When fermenting Datta or Awaze was initially inoculated at low inoculum level (3 log cfu/g), the test strains were not recovered after 24 h of fermentation. At higher initial inoculum level (6 log cfu/g), however, counts of the test strains in Datta at day 7 were less by about 1.5 log unit than the initial inoculum level. In fermenting Awaze, all test strains were completely eliminated in 7 days. The pH of the fermenting green and red Datta was reduced from 5.2 to 4.4 and that of Awaze dropped from 4.9 to 3.8 during this time. In another experiment, the fermented products were separately inoculated with the E. coli O157:H7 test strains at levels of 6 log cfu/g and incubated at ambient and refrigeration (4°C) temperatures for 7 days. In fermented Datta, two of the three strains were not recovered by enrichment after 6 days of storage at ambient temperatures. In fermented Awaze, all strains were below countable levels at day 5, but could still be recovered by enrichment at day 7. At refrigeration storage, counts of the test strains in Datta and Awaze products were <3 log cfu/g at day 7. The inhibition of our E. coli O157:H7 test strains in Datta and Awaze may be due to the antimicrobial activity of spices and other metabolites produced by LAB which may be effective at low pH.  相似文献   

17.
Abstract: Escherichia coli O157:H7 and Salmonella spp. are bacterial pathogens often associated with beef, and cause many cases of foodborne illness each year in the United States. During beef slaughter and processing, these bacteria may spread from the hide or intestines to the carcass. The objective of this research was to investigate the use of naturally occurring compounds citrus essential oils (CEOs) extracted from orange peel to reduce or eliminate these pathogens at the chilling stage of processing, or during fabrication. Brisket flats (used to simulate beef subprimals) were spot inoculated with approximately 6 log of surrogate generic E. coli cocktail (previously shown to be identical in growth and survival parameters to E. coli O157:H7 and Salmonella spp.). Following drying, CEOs were applied by spraying at concentrations of 3% and 6% to the surface of different pieces of meat. Treatments were applied using a custom built spray cabinet at 2.07 bar and applied at a rate of 3.79 L/min to replicate commercial practices. The CEOs significantly reduced (P < 0.05) the concentration of E. coli on the brisket flats in comparison to inoculated no spray or water sprayed controls over a period of 90 d, while causing an initial reduction of approximately 1.4 log units. Total aerobic bacteria and psychrotrophic counts were also reduced on uninoculated briskets following treatment. These results indicate that 3% cold‐pressed terpeneless Valencia orange oil could be used as an additional intervention against E. coli O157:H7 and Salmonella spp. at the refrigerated storage stage of processing. Practical Application: CEOs are natural compounds that have been designated as Generally Recognized as Safe (GRAS). They can be used to control Salmonella spp. and E. coli O157:H7 on beef carcasses at the chilling stage.  相似文献   

18.
Escherichia coli O157:H7 is a major foodborne pathogen that causes severe disease in humans. Survival of E. coli O157:H7 during processing and storage of white brined cheese was investigated. Cheeses were prepared using pasteurized milk inoculated with a 4 strain E. coli O157:H7 cocktail (7 log10 CFU/g) with or without yogurt starter culture (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus salivarius ssp. thermophilus) and stored in 10% or 15% NaCl brine at 10 and 21 ºC for 28 d. NaCl concentration, water activity (aw), pH, and numbers of E. coli O157:H7 and lactic acid bacteria (LAB) were determined in cheese and brine. E. coli O157:H7 was able to survive in cheese stored in both brines at 10 and 21 ºC regardless of the presence of starter LAB, although the latter significantly enhanced E. coli O157:H7 reduction in cheese or its brine at 10 ºC. E. coli O157:H7 numbers were reduced by 2.6 and 3.4 log10 CFU/g in cheese stored in 10% and 15% NaCl brine, respectively, in the presence of starter LAB and by 1.4 and 2.3 log10 CFU/g, respectively, in the absence of starter LAB at 10 ºC. The pathogen survived, but at lower numbers in the brines. The salt concentration of cheese stored in 10% brine remained about 5% during ripening, but in 15% brine, the NaCl level increased 1.6% to 8.1% (w/w) by 28 d. Values of pH and aw slightly decreased 1 d after exposure to brine and reached 5.5 to 6.6 and 0.88 to 0.94, respectively, in all treatments.  相似文献   

19.
Abstract: FT-IR spectroscopy methods for detection, differentiation, and quantification of E. coli O157:H7 strains separated from ground beef were developed. Filtration and immunomagnetic separation (IMS) were used to extract live and dead E. coli O157:H7 cells from contaminated ground beef prior to spectral acquisition. Spectra were analyzed using chemometric techniques in OPUS, TQ Analyst, and WinDAS software programs. Standard plate counts were used for development and validation of spectral analyses. The detection limit based on a selectivity value using the OPUS ident test was 105 CFU/g for both Filtration-FT-IR and IMS-FT-IR methods. Experiments using ground beef inoculated with fewer cells (101 to 102 CFU/g) reached the detection limit at 6 h incubation. Partial least squares (PLS) models with cross validation were used to establish relationships between plate counts and FT-IR spectra. Better PLS predictions were obtained for quantifying live E. coli O157:H7 strains (R2≥ 0.9955, RMSEE ≤ 0.17, RPD ≥ 14) and different ratios of live and dead E. coli O157:H7 cells (R2= 0.9945, RMSEE = 2.75, RPD = 13.43) from ground beef using Filtration-FT-IR than IMS-FT-IR methods. Discriminant analysis and canonical variate analysis (CVA) of the spectra differentiated various strains of E. coli O157:H7 from an apathogenic control strain. CVA also separated spectra of 100% dead cells separated from ground beef from spectra of 0.5% live cells in the presence of 99.5% dead cells of E. coli O157:H7. These combined separation and FT-IR methods could be useful for rapid detection and differentiation of pathogens in complex foods.  相似文献   

20.
Survival of Escherichia coli O157:H7 in apple cider containing no preservatives, 0.025% dimethyl dicarbonate (DMDC), 0.045% sodium benzoate (SB), 0.0046% sodium bisulfite (NaS; 65.5% sulfur dioxide), or a combination of NaS and SB (NaS/SB) and stored at 4, 10, and 25°C was evaluated. E. coli O157:H7 survived for up to 18 days at 4,10, and 25°C in unpreserved apple cider. At 4 and 10°C, DMDC was most efficient at inactivating E. coli O157:H7, generally followed by NaS/SB SB, and NaS (p<0.05). E coli O157:H7 was more resistant to preservatives at 4°C than at 25°C (P < 0.05). E. coli O157:H7 was sublethally injured in cider containing preservatives, and to a lesser extent, in unpreserved cider. Generally, injury was more pronounced in cider containing DMDC, followed by NaS/SB, SB, and NaS (p<0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号