共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
结构振动辐射声场的预估——边界积分方程中奇异积分的间接处理 总被引:4,自引:0,他引:4
本文讨论了利用边界积分方程和边界元技术计算结构的稳态外辐射声场的方法,同时,对边界元方法所固有的奇异数值积分提出了一种简单方便的间接处理方法。计算实例证明所编计算程序和奇异积分处理方法是成功的。利用该程序在已知结构表面振速分布的条件下,可以求出该结构在自由声场中的声功率、表面辐射效率以及声场中任意点的声压值和相位。对一个实际钢质空心封闭圆筒作了计算与实测的比较,结果显示了该方法可应用于实际结构或机器的前景。 相似文献
3.
本文从半无限域结构体声辐射的理论公式──半无限域Helmhothtz积分方程入手,采用边界元法(简称BEM法)离散积分方程,通过变压器壳体表面振动速度场来计算变压器向外辐射的噪声场。文中讨论了计算变压器辐射噪声场的数值计算模型,变压器体表面振动速度的测试,并将BEM法计算结果与实测结果进行了比较,两者基本吻合,最后简要分析了造成误差的原因。 相似文献
4.
用样条边界元计算振动体的三维稳态声辐射 总被引:1,自引:0,他引:1
本文采用三次B样条边界单元计算振动体的三维稳态声辐射。实际计算表明:采用样条边界元可获得较好的数值计算结果。此外,本文在计算声场内点声压的Helmholtz边界积分公式的基础上,导出了计算声场内点质点振速和声强的边界积分公式。文中还给出了应用本文方法计算的算例结果。 相似文献
5.
平面波垂直入射均匀薄板为一常见的透声问题;如果从振动声辐射角度来讲,这也是一个平面波激励板振动的声辐射问题,两种分析思路均已有经典方法可以采用,计算结果也理应一致.前者计算容易,但后者由于积分中含有奇点所以计算比较复杂.文章首先对有限薄板被激振动和声辐射的已有研究结果进行了回顾,重点处理了矩阵求解和奇点积分问题,给出了... 相似文献
6.
7.
Helmholtz声学边界积分方程中奇异积分的计算 总被引:5,自引:0,他引:5
提出了一种非等参单元的四边形坐标变换,它将积分的曲面单元映射为另一四边形单元,通过两次坐标变换引入的雅可比行列式可以消除Helmholtz声学边界积分方程中的弱奇异型O(1/r))积分.而且利用δr/δn以及坐标变换可以同时消除坐标变换无法消除的Cauchy型(O(1/r^2))奇异积分,并给出了消除奇异性的详细证明.该方法给Helmholtz声学边界积分方程中的弱奇异积分与Cauchy奇异积分的计算以及编程提供了极大便利。 相似文献
8.
结构声辐射有限元/边界元法声学-结构灵敏度研究 总被引:12,自引:1,他引:12
声学-结构灵敏度用于预测结构辐射声压随结构设计变量的变化,该值对结构降噪设计有重要意义。提出了基于有限元法、边界元法的声学-结构灵敏度计算方法。基于有限元法计算结构动力学响应及响应速度灵敏度,基于边界元法计算结构辐射声压及声压对振动速度灵敏度。将两个灵敏度联合,得到声学-结构设计灵敏度。以中空六面体为研究实例,给出了激励频率为1~100 H z时,外场声压对壳厚度的灵敏度,并分析了灵敏度随激励频率、设计变量的变化规律。结果表明,基于有限元法、边界元法的声学-结构灵敏度是有效和正确的。 相似文献
9.
利用边界元法中的全特解场方法计算结构振动声辐射 总被引:6,自引:0,他引:6
本文通过利用边界元法中的全特解场方法,对结构振动声辐射的计算进行了研究,并以脉动球为算例,将计算结果与解析解进行比较,结果表明:该方法与一般边界元法相比,在边界剖分相同的情况下,能够在相当宽的振动范围内,给出满意的计算结果。 相似文献
10.
11.
结构声辐射分析的全特解场边界元方法 总被引:3,自引:1,他引:3
提出一种新的高效、高精度的全特解场边界元方法。该方法通过一系列特解来建立边界积分方程,从而避免了其系数矩阵的直接计算。通过对算例及模拟齿轮箱辐射声场的边界元分析,证实了本文方法的有效性。 相似文献
12.
本文综述了五十年代以来对浸没在无界流场中弹性壳体的声散射和声辐射的研究。着重概述了近年来在这一领域的理论和数值研究,为进一步开展这方面的工作提供参考。 相似文献
13.
Sundararajan Natarajan Chongmin Song 《International journal for numerical methods in engineering》2013,96(13):813-841
In this paper, we replace the asymptotic enrichments around the crack tip in the extended finite element method (XFEM) with the semi‐analytical solution obtained by the scaled boundary finite element method (SBFEM). The proposed method does not require special numerical integration technique to compute the stiffness matrix, and it improves the capability of the XFEM to model cracks in homogeneous and/or heterogeneous materials without a priori knowledge of the asymptotic solutions. A Heaviside enrichment is used to represent the jump across the discontinuity surface. We call the method as the extended SBFEM. Numerical results presented for a few benchmark problems in the context of linear elastic fracture mechanics show that the proposed method yields accurate results with improved condition number. A simple code is annexed to compute the terms in the stiffness matrix, which can easily be integrated in any existing FEM/XFEM code. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
14.
Peter R. Johnston 《International journal for numerical methods in engineering》1999,45(10):1333-1348
Accurate numerical determination of line integrals is fundamental to reliable implementation of the boundary element method. For a source point distant from a particular element, standard Gaussian quadrature is adequate, as well as being the technique of choice. However, when the integrals are weakly singular or nearly singular (source point near the element) this technique is no longer adequate. Here a co‐ordinate transformation technique, based on sigmoidal transformations, is introduced to evaluate weakly singular and near‐singular integrals. A sigmoidal transformation has the effect of clustering the integration points towards the endpoints of the interval of integration. The degree of clustering is governed by the order of the transformation. Comparison of this new method with existing co‐ordinate transformation techniques shows that more accurate evaluation of these integrals can be obtained. Based on observations of several integrals considered, guidelines are suggested for the order of the sigmoidal transformations. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
15.
16.
旋转声源辐射声场的计算是利用点源模型预测风扇离散噪声的关键所在,对叶片式机械气动噪声的研究具有重要参考价值.提供了在任意边界条件下计算旋转点声源辐射卢场的数值仿真计算方法.将连续的旋转声源离散化,处理为分布于旋转轨迹上的有限个固定点声源.利用离散化处理后的声源,通过边界元法分别计算旋转单极子和旋转点力源的辐射声场.在自由空间内的计算结果与理论解进行了对比验证,得到较为理想的结果:另外进行了有限长圆管内旋转点声源辐射声场的数值计算,由此对不同长度圆管的结果进行对比,分析了管道长度对声场分布以及指向性的影响规律. 相似文献
17.
Peter R. Johnston 《International journal for numerical methods in engineering》2000,47(10):1709-1730
Accurate numerical integration of line integrals is of fundamental importance to reliable implementation of the boundary element method. Usually, the regular integrals arising from a boundary element method implementation are evaluated using standard Gaussian quadrature. However, the singular integrals which arise are often evaluated in another way, sometimes using a different integration method with different nodes and weights. Here, a co‐ordinate transformation technique is introduced for evaluating weakly singular integrals which, after some initial manipulation of the integral, uses the same integration nodes and weights as those of the regular integrals. The transformation technique is based on newly defined semi‐sigmoidal transformations, which cluster integration nodes only near the singular point. The semi‐sigmoidal transformations are defined in terms of existing sigmoidal transformations and have the benefit of evaluating integrals more accurately than full sigmoidal transformations as the clustering is restricted to one end point of the interval. Comparison of this new method with existing coordinate transformation techniques shows that more accurate evaluation of weakly singular integrals can be obtained. Based on observation of several integrals considered, guidelines are suggested for the type of semi‐sigmoidal transformation to use and the degree to which nodes should be clustered at the singular points. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
18.
W. D. KEAT M. E. ERGUVEN J. F. DWYER 《International journal for numerical methods in engineering》1996,39(21):3679-3703
Mixed-mode fractures of arbitrary orientation with respect to a planar bimaterial interface have been effectively modelled using a surface integral approach. By requiring only that the surface of the fracture be discretized, the surface integral method circumvents the practical difficulties associated with having to mesh the interacting dual singularities in stress along the three-dimensional (3-D) crack front and at the interface. The key elements of this numerical capability are discussed in detail. These include: the derivation of the fundamental solutions for a generalized fracture event near a planar bimaterial interface, formulation of the governing integral equation including its decomposition into singular and non-singular terms, development of analytical and numerical techniques for performing the singular integrations, and efficient numerical integration of the non-singular terms using non-dimensionalized surface approximations of the dipole solutions. The problem of a pressurized planar crack near a bimaterial interface was used to assess convergence. The effect of material contrast and crack shape on tendencies for crack growth were also examined. 相似文献