首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions of the iodolactonization reaction (ILreaction) were optimized as a method for separation of natural polyunsaturated fatty acids. The effects of the solvent, temperature and the ratio of components of the iodizing complex KI/I2 upon the rate of the synthesis of several iodolactones (ILs) in the IL-reaction are described. It was shown that the rate of formation of γ-ILs was significantly higher than that for δ-ILs. This offers opportunity for obtaining pure docosahexaenoic acid (DHA) from fatty acid (FA) concentrates. The possibility for selective reduction of δ-ILs in the presence of γ-ILs to yield pure arachidonic acid (AA) or eicosapentaenoic acid (EPA) or fatty acid concentrates has been demonstrated. Preparation of pure AA from a mixture of AA, DHA and other FAs by the IL-reaction without Chromatographie procedures is described.  相似文献   

2.
Long‐chain polyunsaturated fatty acids (LC‐PUFA) now have a proven role in human health and nutrition, including the n‐3 forms normally found in fish oils. Unfortunately, global fish stocks are now more than ever subject to over‐fishing and environmental pollution, indicating the need for an alternative source of fish oils. Recent efforts have focussed on the production of LC‐PUFA in transgenic plants to provide a sustainable and clean source of fish oils. The current progress in this area is considered, as well as the bottlenecks that remain to be overcome.  相似文献   

3.
Long‐chain polyunsaturated fatty acids (LC‐PUFA) of the n‐3 series, particularly eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid, have specific activities especially in the functionality of the central nervous system. Due to the occurrence of numerous methylene‐interrupted ethylenic double bonds, these fatty acids are very sensitive to air (oxygen) and temperature. Non‐volatile degradation products, which include polymers, cyclic fatty acid monomers (CFAM) and geometrical isomers of EPA and DHA, were evaluated in fish oil samples obtained by deodorization under vacuum of semi‐refined fish oil at 180, 220 and 250 °C. Polymers are the major degradation products generated at high deodorization temperatures, with 19.5% oligomers being formed in oil deodorized at 250 °C. A significant amount of CFAM was produced during deodorization at temperatures above or equal to 220 °C. In fact, 23.9 and 66.3 mg/g of C20 and C22 CFAM were found in samples deodorized at 220 and 250 °C, respectively. Only minor changes were observed in the EPA and DHA trans isomer content and composition after deodorization at 180 °C. At this temperature, the formation of polar compounds and CFAM was also low. However, the oil deodorized at 220 and 250 °C contained 4.2% and 7.6% geometrical isomers, respectively. Even after a deodorization at 250 °C, the majority of geometrical isomers were mono‐ and di‐trans. These results indicate that deodorization of fish oils should be conducted at a maximal temperature of 180 °C. This temperature seems to be lower than the activation energy required for polymerization (intra and inter) and geometrical isomerization.  相似文献   

4.
Enrichment ofcis-5 polyunsaturated fatty acids [20:3(5c,11c,14c), 4.3% and 20:4(5c,11c,14c,17c), 11.3%] fromBiota orientalis seed oil was carried out by lipase-catalyzed selective esterification and hydrolysis reactions. Lipases fromRhizomucor miehei (Lipozyme),Candida cylindracea and porcine pancreas were used. Lipozyme-catalyzed esterification ofBiota fatty acids withn-butanol inn-hexane allowed 20:3 and 20:4 (as fatty acids) to be enriched to a maximum level of 52.9%, and in the presence ofC. cylindracea lipase 61.5% enrichment was achieved. Esterification with pancreatic lipase was poor with low levels of enrichment of 20:3 and 20:4 (22%). A multigram scale esterification of the free fatty acids fromBiota seed oil by repeated treatment of the isolated fatty acid fraction withn-butanol inn-hexane in the presence ofC. cylindracea lipase furnished an enrichment yield of 72.5% of a mixture of 20:3 and 20:4 fatty acids. Urea fractionation of the free fatty acids ofBiota oil gave an initial enriched fraction of 20:3 (9.5%) and 20:4 (25.2%) which, upon treatment withC. cylindracea lipase inn-butanol andn-hexane, gave an enriched fraction of 85.3% of 20:3 and 20:4 fatty acids. Partial hydrolysis of the triglycerides ofBiota oil byC. cylindracea lipase in potassium phosphate buffer at 25°C resulted in a 2.8-fold enrichment ofcis-5 polyunsaturated fatty acids (40.8% of 20:3 and 20:4) as contained in the unhydrolyzed acylglycerol fractions.  相似文献   

5.
Polyisoprenylation is a set of secondary modifications involving proteins whose aberrant activities are implicated in cancers and degenerative disorders. The last step of the pathway involves an ester‐forming polyisoprenylated protein methyl transferase‐ and hydrolytic polyisoprenylated methylated protein methyl esterase (PMPMEase)‐catalyzed reactions. Omega‐3 and omega‐6 PUFAs have been linked with antitumorigeneis and tumorigenesis, respectively. PUFAs are structurally similar to the polyisoprenyl groups and may interfere with polyisoprenylated protein metabolism. It was hypothesized that PUFAs may be more potent inhibitors of PMPMEase than their more polar oxidative metabolites, the prostaglandins. As such, the relative effects of PUFAs and prostaglandins on PMPMEase could explain the association between cyclooxygenase‐2 (COX‐2) expression in tumors, the chemopreventive effects of the non‐steroidal anti‐inflammatory (NSAIDs) COX‐2 inhibitors and PUFAs. PUFAs such as AA, EPA, and DHA inhibited PMPMEase activity with Ki values of 0.12–3.7 µM. The most potent prostaglandin was 63‐fold less potent than AA. The PUFAs were also more effective at inducing neuroblastoma cell death at physiologically equivalent concentrations. The lost PMPMEase activity in AA‐treated degenerating cells was restored by incubating the lysates with COX‐1 or COX‐2. PUFAs may thus be physiological regulators of cell growth and could owe these effects to PMPMEase inhibition. Practical applications: Some PUFAs have been widely reported to have anticancer benefits. However, the molecular mechanisms for these effects are not well understood. The findings in the current paper appear to suggest that inhibition of PMPMEase may underlie their effects. They also imply that the expression of COX‐2 in various tumors may serve to convert the PUFAs into significantly less inhibitory prostaglandins. From these findings, AA and the other PUFAs, rather than being substrates for the synthesis of tumorigenic agents may actually contribute in suppressing cell proliferation. This being congruent with the lower cancer risks associated with long term use of anti‐inflammatory agents, the practical implications will likely include the nutritional and/or therapeutic management of cancer with the goal of maintaining suitable levels of the fatty acids in tissues.  相似文献   

6.
A potential revolution in FA therapies is on the horizon. In recent years, the full magnitude of various FA treatments and their overall importance to health has become increasingly apparent. Fetal and infant nutrition studies have clearly shown that FA status at birth can have life-long health implications affecting eye and brain function, insulin resistance, and blood pressure control. As well, nutrition studies have identified dietary imbalances and deficiencies that have the potential to alter the health of future generations severely and to promote progression of age-related degenerative disorders. Mixtures of naturally occurring FA have shown promise as therapeutic agents for a diverse range of health conditions including atopic eczema, rheumatoid arthritis, cardiovascular disease, and neurological problems. Through the 1990s, the creation of technologies to concentrate and formulate pharmacologically active individual FA components as well as tailored combinations propelled development of this new drug category. However, high production costs and government regulatory encumbrance limited the expansion of this emerging pharmaceutical sector. Fortunately, many countries are now creating regulatory frameworks that are better suited for product evaluation and control of the manufacturing FA products than historical drug models, and hence expansion in this area is now anticipated.  相似文献   

7.
The effect of trans fatty acids from partially hydrogenated soybean oil and butterfat on the formation of polyunsaturated fatty acids was investigated. Five groups of rats were fed diets that contained 20 wt% fat. The content of linoleic acid was adjusted to 10 wt% of the dietary fats in all diets, whereas the amount of trans fatty acids from partially hydrogenated soybean oil (PHSBO) was varied from 4.5 to 15 wt% in three of the five diets. The fourth group received trans fatty acids from butterfat (BF), while the control group was fed palm oil without trans fatty acids. Trans fatty acids in the diet were portionally reflected in rat liver and heart phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylinositol, and phosphatidylserine. Incorporation in the sn-1 position was compensated by a decrease in saturated fatty acids. Trans fatty acids were not detected in diphosphatidylglycerol. Compared to the presence in the dietary fats, 8t- and 10t-18:1 were discriminated against in the incorporation in PE and PC from liver and heart, whereas 9t- and 12t-18:1 were preferred. The formation of 20:4n-6 was not influenced by 4.5 wt% trans fatty acids (from PHSBO) but apparently was by 10 wt% in liver. In contrast, even a content of 2.5 wt% trans fatty acids from BF reduced the formation of 20:4n-6. The inhibitory effect of trans isomers on linoleic acid conversion was reflected less in heart than in liver and less for PE than for PC. Groups with trans fatty acids showed increased 22:6n-3 and 22:5n-3 deposition in liver and heart PE and PC.  相似文献   

8.
The polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA, 20∶5n−3) and docosahexaenoic acid (DHA, 22∶6n−3), which have several pharmaceutical properties, have been purified from cod liver oil. The process consisted of four main steps: (i) saponification of the oil, (ii) use of urea inclusion adducts method to obtain PUFA, (iii) PUFA methylation, and (iv) argentation silica gel column chromatography of the methylated PUFA. Argentation silica gel chromatography yielded highly pure DHA in the process (100% purity, 64% yiild). For EPA, the recovery in the combined process was 29.6%, and the final purity was 90.6%, owing to the simultaneous elution of other polyunsaturated fatty esters. The recovery in the urea inclusion method was strongly enhanced by application of orbital agitation during the crystallization process, in which EPA yield increased from 60–70% without agitation to 90–97% at 800 rpm; stearidonic acid (18∶4n−3) yield ranged from 60–75% without agitation to 87–95% at 800 rpm, and DHA yield varied from 53–73% without agitation to 85–99% at 800 rpm  相似文献   

9.
Odd chain fatty acids (15:0 and 17:0) from dairy fat as well as odd chain phenolic lipids (alkylresorcinols) from whole grain are commonly reviewed as candidate biomarkers for dietary analysis and their ingestion are inversely related to chronic disease risks. Therefore, low levels of dietary intake of these odd chain molecules may be related to higher risk of physiological states that cause chronic diseases or mortality. It is a prerequisite to examine and understand their main role in beneficial health effects in disease prevention. We propose odd chain fatty acids (OC-FA) and most importantly odd chain phenolic lipids (OC-PL) as potential essential dietary compounds since they play key roles in physiological mechanisms. This review evaluates potential roles of OC-FA and OC-PL in mitigating chronic diseases in vitro and in vivo studies to support our hypothesis for odd chain molecules as essential dietary lipids. Further studies are needed to investigate the relationship between reduced intake of OC-FA- and OC-PL-containing foods and susceptibilities to chronic diseases.  相似文献   

10.
11.
Contrary to current opinion, conjugated linoleic acids (CLA) as a mixture of several isomers have been previously shown to function as prooxidants in the form of free fatty acids and methyl esters in heated canola oil. Furthermore, CLA oxidizes considerably faster than linoleic acid. However, stability of CLA relative to other polyunsaturated fatty acids remains undetermined. The present study was therefore undertaken to examine the relative oxidation rate of CLA compared with that of linolenic acid (LNA), arachidonic acid (AA), and docosahexaenoic acid (DHA) in air at 90°C. CLA, both in the form of free fatty acids and triacylglycerols, were extremely unstable to the same extent as DHA, but they oxidized considerably faster than LNA and AA. The mechanism by which CLA were readily decomposed was probably due to formation of the unstable free-radical intermediate.  相似文献   

12.
多不饱和脂肪酸因其在食品和医药领域的广泛作用而得到人们极大的关注,当前利用微生物发酵生产多 不饱和脂肪酸具有诸多优点,由于酵母生产迅速且生物量较高,利用酵母生产多不饱和脂肪酸已成为人们关注 的热点。本文综述了代谢工程改造酵母生产多不饱和脂肪酸的研究进展,以常规酵母-酿酒酵母和非常规酵母- 解脂耶氏酵母为例,介绍了酵母菌中多不饱和脂肪酸的代谢途径、酵母产油脂的生化机制、代谢工程改造酵母 产多不饱和脂肪酸以及不饱和脂肪酸积累对酵母耐受性的影响。以后研究工作的重点是进一步加强对酵母生产 多不饱和脂肪酸的机理研究,并以此为来指导代谢工程改造酵母生产多不饱和脂肪酸。  相似文献   

13.
A new isolate of Mortierella alpina, > 98 % identical with M. alpina ATCC 16266, was cultivated in a defined glucose‐based medium with three organic nitrogen sources (glycine, urea and Na‐L‐glutamate) at three different concentrations in shaking flasks at 20 °C. The results were compared to the cultivation in complex medium with yeast extract as nitrogen source. In the defined media, high yields of polyunsaturated fatty acids (PUFAs) and arachidonic acid (ARA), respectively, were obtained with Na‐L‐glutamate. However, the absolute highest yields of PUFA and ARA were measured with the yeast extract medium. An optimized yeast extract complex medium was used for a submerse bioreactor cultivation in a 45‐L scale. Furthermore, M. alpina was cultivated in a solid state fermenter, using an oat bran water mixture as substrate.  相似文献   

14.
The oxidative stability of polyunsaturated fatty acids (PUFA) and soybean oil homogenized with emulsifiers was investigated. Model emulsions were prepared from PUFA, including linoleic acid (LA), arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), and from soybean oil emulsified with different emulsifiers: three Tween emulsifiers (Tween 20, Tween 60, Tween 80) and two sucrose esters (S-1170 and S-1570) were used. The results showed that the emulsions prepared from LA and the various emulsifiers, oxidized at 40°C, were unstable. However, the corresponding AA, EPA, and DHA emulsions were stable, indicating that PUFA with a higher degree of unsaturation were more stable with emulsifiers than without the emulsifiers. In the soybean oil-in-water model system, the oxidation of soybean oil with various emulsifiers was less than without the emulsifiers.  相似文献   

15.
There is growing scientific evidence that consumption of n‐3 very long‐chain polyunsaturated fatty acids (n‐3 VLC‐PUFA) helps in brain and eye development, and protects against a range of common degenerative diseases. This has provided the impetus to the scientists to develop new and renewable sources for these important fatty acids so that the food industry is able to produce and market products fortified with n‐3 VLC‐PUFA. The bioactive efficacy and stability of food products containing n‐3 VLC‐PUFA may be determined not only by the amount of n‐3 VLC‐PUFA present but also by the positional distribution of these acids within the triacylglycerol (TAG) molecules (regiopurity). Studies of the effects of positional distribution on the functionality of n‐3 VLC‐PUFA containing oils have been hampered by a general lack of pure TAG regioisomers for experimentation. This paper reviews methods that have been used for the synthesis of TAG regioisomers containing n‐3 VLC‐PUFA, with special reference to those in which one n‐3 VLC‐PUFA occurs in combination with two long‐chain saturated acids.  相似文献   

16.
Enzymatic synthesis of steryl esters of polyunsaturated fatty acids   总被引:4,自引:0,他引:4  
Steryl esters of long-chain fatty acids have water-holding properties, and polyunsaturated fatty acids (PUFA) have various physiological functions. Because steryl ester of PUFA can be expected to have both features, we attempted to synthesize steryl esters of PUFA by enzymatic methods. Among lipases used, Pseudomonas lipase was the most effective for the synthesis of cholesteryl docosahexaenoate. When a mixture of cholesterol/docosahexaenoic acid (3:1, mol/mol), 30% water, and 3000 units/g of lipase was stirred at 40°C for 24 h, the esterification extent attained 89.5%. Under the same reaction conditions, cholesterol, cholestanol, and sitosterol were also esterified efficiently with docosahexaenoic, eicosapentaenoic, arachidonic, and γ-linolenic acids.  相似文献   

17.
Tetrahydro-2-pyranyl ethers from fatty primary alcohols can be converted in a one-step procedure into the corresponding carboxylic acids in high yields. This process avoids the synthesis of symmetrical esters, particularly for long-chain compounds. This reaction proved to be useful, for instance, to produce polyunsaturated fatty acids immediately before their biological testing.  相似文献   

18.
The technical and economic feasibility of producing docosahexaenoic acid (DHA)- and eicosapentaenoic acid (EPA)-ethyl ester concentrates from transesterified tuna oil using supercritical fluid chromatography (SFC) was studied. A systematic experimental procedure was used to find the optimal values for process parameters and the maximal production rate. DHA ester concentrates up to 95 wt% purity were obtained in one chromatographic step with SFC, using CO2 as the mobile phase at 65°C and 145 bar and octadecyl silane-type reversed-phase silica as the stationary phase. DHA ester, 0.85 g/(kg stationary phase · h) and 0.23 g EPA ester/(kg stationary phase · h) can be simutaneously produced at the respective purities of 90 and 50 wt%. The process for producing 1,000 kg DHA concentrate and 410 kg EPA concentrate per year requires 160 kg stationary phase and 2.6 tons/h carbon dioxide eluant recycle. The SFC operating cost is U.S. $550/kg DHA and EPA ethyl ester concentrate.  相似文献   

19.
The oxidation of polyunsaturated fatty acids (PUFA) in emulsion with stirring and limited oxygen compensation was studied. A mathematical model of diffusion-oxidation was developed considering the mass transfer resistance of a gas-liquid boundary, the resistance of the boundary layer from the emulsifier membrane, and the autocatalytic-type autoxidation reaction of PUFA. The dynamic mass transfer coefficient of the emulsifier membrane, k0, was introduced. The model was verified by comparing the predictions of the model with the experi- mental data. The results indicated that the model was in good agreement with the oxygen diffusion and linoleic acid oxidation in the emulsion, and showed good applicability in the prediction of the effect of the emulsifier type on the oxidation of PUFA in the emulsion. It indicated that the oxidation of PUFA in emulsions, with stirring and limited oxygen compensation from the atmosphere, was controlled mostly by mass transfer resistance from the emulsifier membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号