首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Previous studies have demonstrated that Geobacter species can effectively remove uranium from contaminated groundwater by reducing soluble U(VI) to the relatively insoluble U(IV) with organic compounds serving as the electron donor. Studies were conducted to determine whether electrodes might serve as an alternative electron donor for U(VI) reduction by a pure culture of Geobacter sulfurreducens and microorganisms in uranium-contaminated sediments. Electrodes poised at -500 mV (vs a Ag/AgCl reference) rapidly removed U(VI) from solution in the absence of cells. However, when the poise at the electrode was removed, all of the U(VI) returned to solution, demonstrating that the electrode did not reduce U(VI). If G. sulfurreducens was present on the electrode, U(VI) did not return to solution until the electrode was exposed to dissolved oxygen. This suggeststhat G. sulfurreducens on the electrode reduced U(VI) to U(IV) which was stably precipitated until reoxidized in the presence of oxygen. When an electrode was placed in uranium-contaminated subsurface sediments, U(VI) was removed and recovered from groundwater using poised electrodes. Electrodes emplaced in flow-through columns of uranium-contaminated sediments readily removed U(VI) from the groundwater, and 87% of the uranium that had been removed was recovered from the electrode surface after the electrode was pulled from the sediments. These results suggest that microorganisms can use electrons derived from electrodes to reduce U(VI) and that it may be possible to remove and recover uranium from contaminated groundwater with poised electrodes.  相似文献   

2.
Green rusts, which are mixed ferrous/ferric hydroxides, are found in many suboxic environments and are believed to play a central role in the biogeochemistry of Fe. Analysis by U LIII-edge X-ray absorption near edge spectroscopy of aqueous green rust suspensions spiked with uranyl (U(VI)) showed that U(VI) was readily reduced to U(IV) by green rust The extended X-ray absorption fine structure (EXAFS) date for uranium reduced by green rust indicate the formation of a UO2 phase. A theoretical model based on the crystal structure of UO2 was generated by using FEFF7 and fitted to the data for the UO2 standard and the uranium in the green rust samples. The model fits indicate that the number of nearest-neighbor uranium atoms decreases from 12 for the UO2 structure to 5.4 forthe uranium-green rust sample. With an assumed four near-neighbor uranium atoms per uranium atom on the surface of UO2, the best-fit value for the average number of uranium atoms indicates UO2 particles with an average diameter of 1.7 +/- 0.6 nm. The formation of nanometer-scale particles of UO2, suggested by the modeling of the EXAFS data, was confirmed by high-resolution transmission electron microscopy, which showed discrete particles (approximately 2-9 nm in diameter) of crystalline UO2. Our results clearly indicate that U(VI) (as soluble uranyl ion) is readily reduced by green rust to U(IV) in the form of relatively insoluble UO2 nanoparticles, suggesting that the presence of green rusts in the subsurface may have significant effects on the mobility of uranium, particularly under iron-reducing conditions.  相似文献   

3.
4.
Reductive bioremediation is currently being explored as a possible strategy for uranium-contaminated aquifers such as the Old Rifle site (Colorado). The stability of U(IV) phases under oxidizing conditions is key to the performance of this procedure. An in situ method was developed to study oxidative dissolution of biogenic uraninite (UO?), a desirable U(VI) bioreduction product, in the Old Rifle, CO, aquifer under different variable oxygen conditions. Overall uranium loss rates were 50-100 times slower than laboratory rates. After accounting for molecular diffusion through the sample holders, a reactive transport model using laboratory dissolution rates was able to predict overall uranium loss. The presence of biomass further retarded diffusion and oxidation rates. These results confirm the importance of diffusion in controlling in-aquifer U(IV) oxidation rates. Upon retrieval, uraninite was found to be free of U(VI), indicating dissolution occurred via oxidation and removal of surface atoms. Interaction of groundwater solutes such as Ca2? or silicate with uraninite surfaces also may retard in-aquifer U loss rates. These results indicate that the prolonged stability of U(IV) species in aquifers is strongly influenced by permeability, the presence of bacterial cells and cell exudates, and groundwater geochemistry.  相似文献   

5.
Previous field studies on in situ bioremediation of uranium-contaminated groundwater in an aquifer in Rifle, Colorado identified two distinct phases following the addition of acetate to stimulate microbial respiration. In phase I, Geobacter species are the predominant organisms, Fe(III) is reduced, and microbial reduction of soluble U(VI) to insoluble U(IV) removes uranium from the groundwater. In phase II, Fe(III) is depleted, sulfate is reduced, and sulfate-reducing bacteria predominate. Long-term monitoring revealed an unexpected third phase during which U(VI) removal continues even after acetate additions are stopped. All three of these phases were successfully reproduced in flow-through sediment columns. When sediments from the third phase were heat sterilized, the capacity for U(VI) removal was lost. In the live sediments U(VI) removed from the groundwater was recovered as U(VI) in the sediments. This contrasts to the recovery of U(IV) in sediments resulting from the reduction of U(VI) to U(IV) during the Fe(III) reduction phase in acetate-amended sediments. Analysis of 16S rRNA gene sequences in the sediments in which U(VI) was being adsorbed indicated that members of the Firmicutes were the predominant organisms whereas no Firmicutes sequences were detected in background sediments which did not have the capacity to sorb U(VI), suggesting that the U(VI) adsorption might be due to the presence of these living organisms or at least their intact cell components. This unexpected enhanced adsorption of U(VI) onto sediments following the stimulation of microbial growth in the subsurface may potentially enhance the cost effectiveness of in situ uranium bioremediation.  相似文献   

6.
Hexavalent uranium (U(VI)) can be reduced enzymatically by various microbes and abiotically by Fe(2+)-bearing minerals, including magnetite, of interest because of its formation from Fe(3+) (oxy)hydroxides via dissimilatory iron reduction. Magnetite is also a corrosion product of iron metal in suboxic and anoxic conditions and is likely to form during corrosion of steel waste containers holding uranium-containing spent nuclear fuel. Previous work indicated discrepancies in the extent of U(VI) reduction by magnetite. Here, we demonstrate that the stoichiometry (the bulk Fe(2+)/Fe(3+) ratio, x) of magnetite can, in part, explain the observed discrepancies. In our studies, magnetite stoichiometry significantly influenced the extent of U(VI) reduction by magnetite. Stoichiometric and partially oxidized magnetites with x ≥ 0.38 reduced U(VI) to U(IV) in UO(2) (uraninite) nanoparticles, whereas with more oxidized magnetites (x < 0.38) and maghemite (x = 0), sorbed U(VI) was the dominant phase observed. Furthermore, as with our chemically synthesized magnetites (x ≥ 0.38), nanoparticulate UO(2) was formed from reduction of U(VI) in a heat-killed suspension of biogenic magnetite (x = 0.43). X-ray absorption and M?ssbauer spectroscopy results indicate that reduction of U(VI) to U(IV) is coupled to oxidation of Fe(2+) in magnetite. The addition of aqueous Fe(2+) to suspensions of oxidized magnetite resulted in reduction of U(VI) to UO(2), consistent with our previous finding that Fe(2+) taken up from solution increased the magnetite stoichiometry. Our results suggest that magnetite stoichiometry and the ability of aqueous Fe(2+) to recharge magnetite are important factors in reduction of U(VI) in the subsurface.  相似文献   

7.
The chemical stability of biogenic UO2, a nanoparticulate product of environmental bioremediation, may be impacted by the particles' surface free energy, structural defects, and compositional variability in analogy to abiotic UO(2+x) (0 < or = x < or = 0.25). This study quantifies and compares intrinsic solubility and dissolution rate constants of biogenic nano-UO2 and synthetic bulk UO2.00, taking molecular-scale structure into account. Rates were determined under anoxic conditions as a function of pH and dissolved inorganic carbon in continuous-flow experiments. The dissolution rates of biogenic and synthetic UO2 solids were lowest at near neutral pH and increased with decreasing pH. Similar surface area-normalized rates of biogenic and synthetic UO2 suggest comparable reactive surface site densities. This finding is consistent with the identified structural homology of biogenic UO2 and stoichiometric UO2.00 Compared to carbonate-free anoxic conditions, dissolved inorganic carbon accelerated the dissolution rate of biogenic UO2 by 3 orders of magnitude. This phenomenon suggests continuous surface oxidation of U(IV) to U(VI), with detachment of U(VI) as the rate-determining step in dissolution. Although reducing conditions were maintained throughout the experiments, the UO2 surface can be oxidized by water and radiogenic oxidants. Even in anoxic aquifers, UO2 dissolution may be controlled by surface U(VI) rather than U(IV) phases.  相似文献   

8.
A promising remediation approach to mitigate subsurface uranium contamination is the stimulation of indigenous bacteria to reduce mobile U(VI) to sparingly soluble U(IV). The product of microbial uranium reduction is often reported as the mineral uraninite. Here, we show that the end products of uranium reduction by several environmentally relevant bacteria (Gram-positive and Gram-negative) and their spores include a variety of U(IV) species other than uraninite. U(IV) products were prepared in chemically variable media and characterized using transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) to elucidate the factors favoring/inhibiting uraninite formation and to constrain molecular structure/composition of the non-uraninite reduction products. Molecular complexes of U(IV) were found to be bound to biomass, most likely through P-containing ligands. Minor U(IV)-orthophosphates such as ningyoite [CaU(PO(4))(2)], U(2)O(PO(4))(2), and U(2)(PO(4))(P(3)O(10)) were observed in addition to uraninite. Although factors controlling the predominance of these species are complex, the presence of various solutes was found to generally inhibit uraninite formation. These results suggest a new paradigm for U(IV) in the subsurface, i.e., that non-uraninite U(IV) products may be found more commonly than anticipated. These findings are relevant for bioremediation strategies and underscore the need for characterizing the stability of non-uraninite U(IV) species in natural settings.  相似文献   

9.
Uranium mobility in the environment is partially controlled by its oxidation state, where it exists as either U(VI) or U(IV). In aerobic environments, uranium is generally found in the hexavalent form, is quite soluble, and readily forms complexes with carbonate and calcium. Under anaerobic conditions, common metal respiring bacteria can reduce soluble U(VI) species to sparingly soluble UO2 (uraninite); stimulation of these bacteria, in fact, is being explored as an in situ uranium remediation technique. However, the stability of biologically precipitated uraninite within soils and sediments is not well characterized. Here we demonstrate that uraninite oxidation by Fe(III) (hydr)oxides is thermodynamically favorable under limited geochemical conditions. Our analysis reveals that goethite and hematite have a limited capacity to oxidize UO2(biogenic) while ferrihydrite can lead to UO2(biogenic) oxidation. The extent of UO2(biogenic) oxidation by ferrihydrite increases with increasing bicarbonate and calcium concentration, but decreases with elevated Fe(II)(aq) and U(VI)(aq) concentrations. Thus, our results demonstrate that the oxidation of UO2(biogenic) by Fe(III) (hydr)oxides may transpire under mildly reducing conditions when ferrihydrite is present.  相似文献   

10.
Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray microprobe and X-ray absorption spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced in the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting reoxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.  相似文献   

11.
Transport of uranium within surface and subsurface environments is predicated largely on its redox state. Uranyl reduction may transpire through either biotic (enzymatic) or abiotic pathways; in either case, reduction of U(VI) to U(IV) results in the formation of sparingly soluble UO2 precipitates. Biological reduction of U(VI), while demonstrated as prolific under both laboratory and field conditions, is influenced by competing electron acceptors (such as nitrate, manganese oxides, or iron oxides) and uranyl speciation. Formation of Ca-UO2-CO3 ternary complexes, often the predominate uranyl species in carbonate-bearing soils and sediments, decreases the rate of dissimilatory U(VI) reduction. The combined influence of uranyl speciation within a mineralogical matrix comparable to natural environments and under hydrodynamic conditions, however, remains unresolved. We therefore examined uranyl reduction by Shewanella putrefaciens within packed mineral columns of ferrihydrite-coated quartz sand under conditions conducive or nonconducive to Ca-UO2-CO3 species formation. The results are dramatic. In the absence of Ca, where uranyl carbonato complexes dominate, U(VI) reduction transpires and consumes all of the U(VI) within the influent solution (0.166 mM) over the first 2.5 cm of the flow field for the entirety of the 54 d experiment. Over 2 g of U is deposited during this reaction period, and despite ferrihydrite being a competitive electron acceptor, uranium reduction appears unabated for the duration of our experiments. By contrast, in columns with 4 mM Ca in the influent solution (0.166 mM uranyl), reduction (enzymatic or surface-bound Fe(III) mediated) appears absent and breakthrough occurs within 18 d (at a flow rate of 3 pore volumes per day). Uranyl speciation, and in particular the formation of ternary Ca-UO2-CO3 complexes, has a profound impact on U(VI) reduction and thus transport within anaerobic systems.  相似文献   

12.
The mechanisms of photodegradation of binary iron- and uranium-citrate and ternary iron-uranium-citrate complexes were elucidated. Citric acid degradation products were identified by HPLC and GC, and the metal precipitates were identified by XRD and EXAFS. Photodegradation of a binuclear iron-citrate complex occurred as a result of two one-electron oxidations of citric acid with the formation of 3-oxoglutarate and two ferrous ions. The ferrous ions were reoxidized by a photo-Fenton reaction, resulting in the precipitation of iron as two-line ferrihydrite Fe(OH)3. The citric acid in the uranium-citrate complex underwent a two-electron oxidation to acetoacetate with the concomitant reduction of U(VI) to U(IV). The U(IV) was subsequently photooxidized in the presence of dioxygen with precipitation of uranium as the mineral schoepite (UO3 x 2H2O). A two-step electron reduction of two ferric ions to two ferrous ions wasthe primary mechanism for photodegradation of the ternary iron-uranium-citrate complex with oxidation of citric acid to 3-oxoglutarate; reduction of uranium was not observed. The iron precipitated as ferrihydrite and the uranyl ion as a uranyl hydroxide species. These results show the potential application of photochemical treatment of wastewater and decontamination solutions containing binary and ternary iron- and uranium-citrate complexes.  相似文献   

13.
Biogenic UO? (uraninite) nanocrystals may be formed as a product of a microbial reduction process in uranium-enriched environments near the Earth's surface. We investigated the size, nanometer-scale structure, and aggregation state of UO? formed by iron-reducing bacterium, Shewanella putrefaciens CN32, from a uranium-rich solution. Characterization of biogenic UO? precipitates by high-resolution transmission electron microscopy (HRTEM) revealed that the UO? nanoparticles formed were highly aggregated by organic polymers. Nearly all of the nanocrystals were networked in more or less 100 nm diameter spherical aggregates that displayed some concentric UO? accumulation with heterogeneity. Interestingly, pure UO? nanocrystals were piled on one another at several positions via UO?-UO? interactions, which seem to be intimately related to a specific step in the process of growing large single crystals. In the process, calcium that was easily complexed with aqueous uranium(VI) appeared not to be combined with bioreduced uranium(IV), probably due to its lower binding energy. However, when phosphate was added to the system, calcium was found to be easily associated with uranium(IV), forming a new uranium phase, ningyoite. These results will extend the limited knowledge of microbial uraniferous mineralization and may provide new insights into the fate of aqueous uranium complexes.  相似文献   

14.
Aqueous U(VI) reduction by hydrogen sulfide was investigated by batch experiments and speciation modeling; product analysis by transmission electron microscopy (TEM) was also performed. The molar ratio of U(VI) reduced to sulfide consumed, and the TEM result suggested that the reaction stoichiometry could be best represented by UO2(2+) + HS- = UO2+ S* + H+. At pH 6.89 and total carbonate concentration ([CO32-]T) of 4.0 mM, the reaction took place according to the following kinetics: -d[U(VI)]/dt = 0.0103[U(VI)][S2-]T0.54 where [U(VI)] is the concentration of hexavalent uranium, and [S2-]T is the total concentration of sulfide. The kinetics of U(VI) reduction was found to be largely controlled by [CO32-]T (examined from 0.0 to 30.0 mM) and pH (examined from 6.37 to 9.06). The reduction was almost completely inhibited with the following [CO32-]T and pH combinations: [(> or = 15.0 mM, pH 6.89); (> or = 4.0 mM, pH 8.01); and (> or = 2.0 mM, pH 9.06)]. By comparing the experimental results with the calculated speciation of U(VI), it was found that there was a strong correlation between the measured initial reaction rates and the calculated total concentrations of uranium-hydroxyl species; we, therefore, concluded that uranium-hydroxyl species were the ones being reduced by sulfide, not the dominant U-carbonate species present in many carbonate-containing systems.  相似文献   

15.
The reduction of soluble hexavalent uranium to tetravalent uranium can be catalyzed by bacteria and minerals. The end-product of this reduction is often the mineral uraninite, which was long assumed to be the only product of U(VI) reduction. However, recent studies report the formation of other species including an adsorbed U(IV) species, operationally referred to as monomeric U(IV). The discovery of monomeric U(IV) is important because the species is likely to be more labile and more susceptible to reoxidation than uraninite. Because there is a need to distinguish between these two U(IV) species, we propose here a wet chemical method of differentiating monomeric U(IV) from uraninite in environmental samples. To calibrate the method, U(IV) was extracted from known mixtures of uraninite and monomeric U(IV) and tested using X-ray absorption spectroscopy (XAS). Monomeric U(IV) was efficiently removed from biomass and Fe(II)-bearing phases by bicarbonate extraction, without affecting uraninite stability. After confirming that the method effectively separates monomeric U(IV) and uraninite, it is further evaluated for a system containing those reduced U species and adsorbed U(VI). The method provides a rapid complement, and in some cases alternative, to XAS analyses for quantifying monomeric U(IV), uraninite, and adsorbed U(VI) species in environmental samples.  相似文献   

16.
U(VI) doped hematite was synthesized and exposed to two different organic reductants with E(0) of 0.23 and 0.70 V. A combination of HAADF-TEM and EXAFS provided evidence that uranium was incorporated in hematite in uranate, likely octahedral coordination. XPS indicated that structurally incorporated U(VI) was reduced to U(V), whereas non-incorporated U(VI) was reduced to U(IV). Specifically, the experiments indicate that U(V) was the dominant oxidation state of uranium in hematite around Eh -0.24 to -0.28 V and pH 7.7-8.6 for at least up to 5 weeks of reaction time. U(V), but not U(IV), was also detected in hematite at Eh +0.21 V (pH 7.1-7.3). The results support the hypothesis, based on previous experimental and theoretical work, that the stability field of U(V) is widened relative to U(IV) and U(VI) in uranate coordination environments where the coordination number of U is less than 8.  相似文献   

17.
Sequestration of uranium (U) by magnetite is a potentially important sink for U in natural and contaminated environments. However, molecular-scale controls that favor U(VI) uptake including both adsorption of U(VI) and reduction to U(IV) by magnetite remain poorly understood, in particular, the role of U(VI)-CO(3)-Ca complexes in inhibiting U(VI) reduction. To investigate U uptake pathways on magnetite as a function of U(VI) aqueous speciation, we performed batch sorption experiments on (111) surfaces of natural single crystals under a range of solution conditions (pH 5 and 10; 0.1 mM U(VI); 1 mM NaNO(3); and with or without 0.5 mM CO(3) and 0.1 mM Ca) and characterized surface-associated U using grazing incidence extended X-ray absorption fine structure spectroscopy (GI-EXAFS), grazing incidence X-ray diffraction (GI-XRD), and scanning electron microscopy (SEM). In the absence of both carbonate ([CO(3)](T), denoted here as CO(3)) and calcium (Ca), or in the presence of CO(3) only, coexisting adsorption of U(VI) surface species and reduction to U(IV) occurs at both pH 5 and 10. In the presence of both Ca and CO(3), only U(VI) adsorption (VI) occurs. When U reduction occurs, nanoparticulate UO(2) forms only within and adjacent to surface microtopographic features such as crystal boundaries and cracks. This result suggests that U reduction is limited to defect-rich surface regions. Further, at both pH 5 and 10 in the presence of both CO(3) and Ca, U(VI)-CO(3)-Ca ternary surface species develop and U reduction is inhibited. These findings extend the range of conditions under which U(VI)-CO(3)-Ca complexes inhibit U reduction.  相似文献   

18.
Sorption of contaminants onto mineral surfaces is an important process that can restrict their transport in the environment. In the current study, uranium (U) uptake on magnetite (111) was measured as a function of time and solution composition (pH, [CO(3)](T), [Ca]) under continuous batch-flow conditions. We observed, in real-time and in situ, adsorption and reduction of U(VI) and subsequent growth of UO(2) nanoprecipitates using atomic force microscopy (AFM) and newly developed batch-flow U L(III)-edge grazing-incidence X-ray absorption spectroscopy near-edge structure (GI-XANES) spectroscopy. U(VI) reduction occurred with and without CO(3) present, and coincided with nucleation and growth of UO(2) particles. When Ca and CO(3) were both present no U(VI) reduction occurred and the U surface loading was lower. In situ batch-flow AFM data indicated that UO(2) particles achieved a maximum height of 4-5 nm after about 8 h of exposure, however, aggregates continued to grow laterally after 8 h reaching up to about 300 nm in diameter. The combination of techniques indicated that U uptake is divided into three-stages; (1) initial adsorption of U(VI), (2) reduction of U(VI) to UO(2) nanoprecipitates at surface-specific sites after 2-3 h of exposure, and (3) completion of U(VI) reduction after ~6-8 h. U(VI) reduction also corresponded to detectable increases in Fe released to solution and surface topography changes. Redox reactions are proposed that explicitly couple the reduction of U(VI) to enhanced release of Fe(II) from magnetite. Although counterintuitive, the proposed reaction stoichiometry was shown to be largely consistent with the experimental results. In addition to providing molecular-scale details about U sorption on magnetite, this work also presents novel advances for collecting surface sensitive molecular-scale information in real-time under batch-flow conditions.  相似文献   

19.
Nuclear weapons and fuel production have left many soils and sediments contaminated with toxic levels of uranium (U). Although previous short-term experiments on microbially mediated U(VI) reduction have supported the prospect of immobilizing the toxic metal through formation of insoluble U(IV) minerals, our longer-term (17 months) laboratory study showed that microbial reduction of U can be transient, even under sustained reducing conditions. Uranium was reduced during the first 80 days, but later (100-500 days) reoxidized and solubilized, even though a microbial community capable of reducing U(VI) was sustained. Microbial respiration caused increases in (bi)-carbonate concentrations and formation of very stable uranyl carbonate complexes, thereby increasing the thermodynamic favorability of U(IV) oxidation. We propose that kinetic limitations including restricted mass transfer allowed Fe-(III) and possibly Mn(IV) to persist as terminal electron acceptors (TEAs) for U reoxidation. These results show that in-situ U remediation by organic carbon-based reductive precipitation can be problematic in sediments and groundwaters with neutral to alkaline pH, where uranyl carbonates are most stable.  相似文献   

20.
Costly disposal of uranium (U) contaminated sediments is motivating research on in situ U(VI) reduction to insoluble U(IV) via directly or indirectly microbially mediated pathways. Delivery of organic carbon (OC) into sediments for stimulating U bioreduction is diffusion-limited in less permeable regions of the subsurface. To study OC-based U reduction in diffusion-limited regions, one slightly acidic and another calcareous sediment were treated with uranyl nitrate, packed into columns, then hydrostatically contacted with tryptic soy broth solutions. Redox potentials, U oxidation state, and microbial communities were well correlated. At average supply rates of 0.9 micromol OC (g sediment)(-1) day(-1), the U reduction zone extended to only about35-45 mm into sediments. The underlying unreduced U(VI) zone persisted over 600 days because the supply of OC was diffusion-limited and metabolized within a short distance. These results also suggestthat low U concentrations in groundwater samples from OC-treated sediments are not necessarily indicative of pervasive U reduction because interior and exterior regions of such sediment blocks can contain primarily U(VI) and U(IV), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号