首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SrCo1 − x FexO3 − δ solid solutions with 0.3 ≤ x ≤ 0.9 are shown to have the cubic perovskite structure. The unit-cell parameter and volume of the solid solutions are nonmonotonic functions of Fe content, with a minimum at x = 0.4. Dilatometric data are used to determine the thermal expansion coefficients of the solid solutions. At low oxygen partial pressures ( ≤ 40 Pa), the high-temperature, disordered perovskite phase exists between 850 and 1000°C, which is the optimal temperature range for the effective use of SrCo1 − x FxO3 − δ ceramics as oxygen membranes in oxygen partial pressure gradients of 104–105/10–100 Pa.__________Translated from Neorganicheskie Materialy, Vol. 41, No. 8, 2005, pp. 998–1004.Original Russian Text Copyright © 2005 by Kokhanovskii, Zonov, Ol’shevskaya, Pan’kov.  相似文献   

2.
Here in, we report the charge transport mechanism in semiconducting La0.5Ca0.5Mn0.5Fe0.5O3 (LCMFO) polycrystalline material synthesized via sol–gel auto combustion route. X-ray diffraction (XRD) analysis confirmed the orthorhombic phase of the prepared material. Temperature dependent resistivity and impedance spectroscopy measurements have been carried out to probe the dielectric and electrical conduction mechanism which revealed a change of Mott variable range to the small polaronic hopping conduction mechanism around 303 K. The complex impedance and modulus spectra undoubtedly showed the contribution of both grain and grain boundary effect on the conduction properties of LCMFO. An equivalent circuit [(RgbQgb) (RgQg)] model has been used to address the electrical parameters associated with the different phases (grains and grain boundaries) having different relaxation times. The values of resistances of two phases obtained after fitting the equivalent circuit in the nyquist plot have been analyzed which confirmed the change of conduction mechanism around 303 K. The resultant change in conduction mechanism is also supported by the conductivity plots.  相似文献   

3.
This study reports the successful preparation of potential candidate Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxides for intermediate-temperature solid oxide fuel cells (IT-SOFCs) by a combined citrate-ethylenediaminetetraacetic acid (EDTA) complexing method. The resulting crystal properties, chemical composition, conductivity, and electrochemical properties were studied by X-ray diffraction (XRD), inductively coupled plasma mass spectroscopy (ICP-MS), energy dispersive spectrum (EDS), four-point DC measurement and AC impedance. The X-ray diffraction results of all samples with different pH values reveal a basic perovskite structure. Although samples prepared from different pH solutions have a similar structure, their chemical composition and grain morphologies are different. The optimized composition of BSCF is the sample prepared from the precursor solution with a pH value of 6; this produced highest conductivity at 50.2 S/cm at 400 °C, which is 1.3 times higher than the sample prepared from the precursor solution with a pH value of 9. Electrochemical impedance spectra at an intermediate temperature reveal the better electrochemical performance of BSCF electrode prepared from the solution with pH of 6. The lowest polarization resistance values for charge transfer and oxygen diffusion are 0.07 and 0.11 Ω cm2 at 800 °C, respectively.  相似文献   

4.
Films 150–200 nm in thickness, with the nominal composition Mg(Fe0.8Ga0.2)2O4 − δ have been grown on (100) single-crystal silicon substrates by ion-beam sputtering in vacuum. The effect of growth and annealing conditions on the crystal structure and morphology of the films has been studied, and the thermal conditions for the growth of spinel-structure films have been optimized.  相似文献   

5.
Ceramic samples of (Pb1?xCax)(Fe0.5Nb0.5)O3 with x = 0.20, 0.40, 0.45, 0.50, 0.55 and 0.60 were obtained by columbite precursor method. All the synthesized samples have perovskite structure with pseudo-cubic symmetry. Dielectric properties of all the samples were measured as a function of frequency from room temperature up to 573 K. Two dielectric anomalies were observed in εr–T plots at about 400 and 500 K. The impedance analysis depicts a single relaxation process. Activation energies obtained from temperature dependence of relaxation frequency, f0 and grain resistance, Rg were found to be more or less comparable. The observed relaxation in all the samples seems to be due to electron relaxation associated with oxygen vacancies.  相似文献   

6.
Magnetoelectric (ME) composites consisting of K0.5Na0.5NbO3 (KNN) as ferroelectric phase and CoMn0.2Fe1.8O4 (CMFO) as ferrite phase with general formula (x) CoMn0.2Fe1.8O4–(1???x) K0.5Na0.5NbO3 (x?=?10, 20, 30, 40 and 50 wt%) were synthesized using solid state reaction method. X-ray diffraction analysis asserts the existence of component phases including spinel phase of CMFO and orthorhombic phase of KNN. Field emission scanning electron microscopy has been used for studying the morphology and calculation of average grain size. The temperature dependent dielectric properties including dielectric constant (\(\varepsilon ^{\prime}\)) and dielectric loss (tan δ) at different frequencies has been studied and both are found to increase with incorporation of CMFO. Magnetic hysteresis loops have been measured at temperatures of 300 and 5 K. Variation of magnetization versus temperature has been studied in field cooled and zero field cooled modes. Polarization versus electric field (P–E) hysteresis loops are obtained at room temperature indicating presence of ferroelectric ordering in the composites at room temperature. The remnant polarization (2Pr) and coercive field (2Ec) are found to decrease linearly with incorporation of CMFO. ME voltage coefficient (αME) has been measured. The maximum value of αME is found to be 5.941 mV/cm-Oe for 10% CMFO–90% KNN bulk composite.  相似文献   

7.
The nickel cobalt ferrite (Co0.5Zn0.5Fe2O4) nanopowders were synthesized by a sol–gel method and a hydrothermal method. Polyethylene glycol (PEG-4000) and carboxymethyl cellulose (CMC) were used as the templating agents for controlling the anisotropy and the microstructure of the Co0.5Zn0.5Fe2O4 nanopowders. The microstructure and magnetic property of the synthesized powders were comparatively studied. The results indicated that the synthesis technique and the template had remarkable dependence on the microstructure and the magnetic property of the nanopowders. The powder synthesized by the sol–gel method without any template had a maximum saturation magnetization of 73.6 emu g−1 closing to the value of the bulk material (80 emu g−1), while the PEG-4000 and CMC decreased the magnetization to 54.0 and 60.9 emu g−1. The three powders showed almost same coercivity (314–343 Oe). However, the PEG-4000 and CMC in the hydrothermal process obviously decreased and increased the coercivity respectively from 1,464 Oe to 5 Oe and 4,304 Oe but had small effect of the magnetization (55.5–59.0 emu g−1).  相似文献   

8.
The phase formation and magnetic property evolution processes of the hexaferrite with composition BaO?0.9Sc2O3?5.1Fe2O3 have been investigated. Results show that when the calcination temperature is lower than 1000 °C, the spinel phase BaFe2O4 and M-type hexaferrite phase BaFe12O19 dominate. The M-type hexaferrite BaFe12?xScxO19 (0?<?x?≤?1.8) appears above 1050 °C and becomes a single phase BaFe10.2Sc1.8O19 above 1200 °C. A two-step decrease of both the coercivity and remanence ratio is observed above 1050 °C, which agrees well with the appearance of soft magnetic phase BaFe12?xScxO19 (0?<?x?≤?1.8). The saturation magnetization of the sample increases with calcination temperature until 1100 °C and then decreases. Raman spectra results show that the above magnetic property evolutions can be explained by a temperature dependent incorporation of Sc3+ into the lattice sites nearby the magnetic blocks’ interfaces. This weakens the local magnetic exchange interactions between Fe3+ and thus leads to a change in the magnetic structure.  相似文献   

9.
SmNixFe1?xO3 (0?≤?x?≤?0.5) with perovskite-type structure has been successfully prepared by conventional solid-state reaction as a microwave and laser multi-functional material. The optimized synthesis temperature and the effects of Ni doping on the reflectivity, electromagnetic loss properties were investigated in details. XRD results shown that synthesis temperature did not change the perovskite structure of SmFeO3. The reflectivity at 1.06 μm was about 0.33% at 1200–1300?°C. Doping Ni did not cause the change of perovskite structure. The incorporation of Ni in SmFeO3 contributed to the decrease of reflectivity at a wider wavelength, SmNi0.3Fe0.7O3 possessed the lowest reflectivity at 1.06 μm. Moreover, electromagnetic property was very sensitive to Ni content. The real and imaginary parts of complex permeability were enhanced remarkably at a certain frequency. The changes in magnetic performance provided possibility of choosing specific frequency of magnetic loss. The difference in electric and magnetic losses caused by Ni concentration could result in microwave absorption at different frequency. In a word, SmNixFe1?xO3 could be a promising candidate for a multi-functional material with compatible camouflage capability for radar and laser waveband.  相似文献   

10.
In this work, we have described the antibacterial activities of Fe3O4 nanoparticles with different organic parts, including Humic acid (HA), Nicotinic acid (Nico) and Histidine (His), and the antibacterial activity of MnFe2O4 nanoparticles coated with PANI and SiO2 against different bacteria and some standard antibacterial drugs. The present study revealed that the newly fabricated various Fe3O4 and MnFe2O4 nanocomposites, when combined with some different organic parts, are superiour antibacterial agents. Also, the synthesized nanocomposites can be easily separated from aqueous solution by magnetic filtration without any contamination of the medium.  相似文献   

11.
Bi(Mg0.5Ti0.5)O3–PbTiO3 (BMT–PT) ceramics, with BMT–PT ratios ranging from 70-30 to 50-50, were prepared by a conventional solid state reaction process. The 50-50 BMT–PT ceramic possessed a tetragonal perovskite structure with a c/a ratio of ~1.037. Increasing BMT content led to a reduction of tetragonality and a change of structure to a rhombohedral or pseudo-cubic phase. Dielectric measurements, carried out during heating, indicated the occurrence of two phase transformations, which were identified as relaxor ferroelectric to antiferroelectric (at a temperature in the range from 150–300 °C) and antiferroelectric to paraelectric (at a temperature around 500 °C). The antiferroelectric nature of the 60-40 and 70-30 BMT–PT ceramics in the intermediate temperature range was confirmed by polarisation-electric field hysteresis measurements.  相似文献   

12.
Mechanical treatment of Fe2O3, Al and Fe powder mixtures was carried out in a high energy ball mill to synthesize Fe3Al–Al2O3 intermetallic matrix nanocomposite. Different compositions including 3Fe + Al, Fe2O3 + 2Al, 3Fe2O3 + 8Al and Fe2O3 + 3Al+Fe were chosen in this study. Phase development and structural changes occurring during ball milling were investigated by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results showed that during MA, Fe2O3, Al, and Fe react to give a nanocrystalline Fe3Al intermetallic compound matrix. The presence of pure Fe in initial powder mixture changed the modality of mechanochemical process from sudden to gradual reaction. The Fe3Al–Al2O3 compound had a finer microstructure and particles size compared to the Fe3Al compound.  相似文献   

13.
FTIR spectroscopy has been employed to investigate the structure of CaF2–B2O3 glasses. It is proposed that CaF2 partially modifies the borate network forming \textCa 1 / 2 2+ [\textBO 3 / 2 \textF] - {\text{Ca}}_{ 1 / 2}^{ 2+ } [{\text{BO}}_{ 3 / 2} {\text{F]}}^{ - } units. The rest of CaF2 is assumed to build an amorphous network formed of CaF4 tetrahedra. Analysis of density and molar volume revealed that the volume of CaF4 tetrahedron in the studied glasses is slightly greater than that in the crystalline form. Data of density, molar volume, and electric conductivity have been correlated with the glass structure. As far as the authors know, CaF2–B2O3 glasses are investigated for the first time.  相似文献   

14.
In this study, NaNO3, Bi(NO3)3·5H2O, Ba(NO3)2, Ti(OC4H9)4 and citric acid were successfully introduced to fabricate lead-free piezoelectric (Na0.5Bi0.5)0.94Ba0.06TiO3 [NBBT] nanopartical powders by a novel modified sol–gel auto-combustion method. The resultant products were characterized by the X-ray diffraction analysis and transmission electron microscope method. (Na0.5Bi0.5)0.94Ba0.06TiO3 + Mn(NO3)2 [NBBTM] can be sintered by the traditional solid-state reaction, and the effects of NBBT doped different amounts of Mn(NO3)2 at various sintering temperatures upon phase formation, microstructure as well as piezoelectric properties were further studied. The experimental results show that it was helpful to control their chemical ingredients and microstructure to prepare nanocrystalline single phase NBBT powders. Where is the X-ray diffraction result of the corresponding ceramics to prove the existence of the mixing between rhombohedral and tetragonal phases at the MPB compositions. Doping 0.015 mol% Mn(NO3)2 into NBBT at 1,090 °C, piezoelectric constant (d 33) and relative dielectric constant (εr) reach the superior value of 159pC/N and 1,304, respectively, and dielectric loss (tan δ) and electromechanical coupling factor (K t) are 2.5% and 65%, respectively.  相似文献   

15.
The kinetics of spontaneous demagnetization in nanoparticles of the exotic epsilon-phase of indium-doped iron(III) oxide (ε-In0.24Fe1.76O3) has been studied using the method of accelerated testing of magnets for temporal stability in a magnetization-reversal field. Time dependences of the magnetization of nanoparticles measured in a wide range of magnetic fields exhibited rectification in semilogarithmic coordinates. The dependence of the magnetic viscosity on the magnetic field has been measured and used for determining the fluctuation field and activation volume. A relationship between the magnetic viscosity and magnetic noise caused by random thermoinduced magnetization reversal in separate nanoparticles is established.  相似文献   

16.
Different mechanical testing methods have been used to assess the elastic behavior of the mixed ion electron conducting perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF). Although the main aim is the comparison of the testing techniques for ceramic material in general, experiments have been performed at RT and up to 900 °C to illustrate the capabilities of the utilized methods for a perovskite with a stiffness anomaly. BSCF specimens in disc shape and tubular geometry provided by different suppliers were tested in biaxial bending by ring-on-ring testing and under uniaxial stress in O-ring and under compression loading. The elastic modulus was determined as a function of temperature up to 900 °C. In addition, the room temperature elastic modulus was measured using depth-sensitive indentation.  相似文献   

17.
Spray pyrolysis has been used to produce X-ray amorphous precursors with the nominal composition SrFe12O19 · 6SrB2O4 in the form of spherical particles 0.3 to 2 μm in diameter. Heat treatment of the precursors at temperatures from 650 to 900°C has produced platelike strontium hexaferrite particles embedded in a SrB2O4 matrix. With increasing annealing temperature, the average dimensions of the hexaferrite particles increase from 80 × 20 to 450 × 100 nm and the coercivity of the material rises from 240 to 440 kA/m.  相似文献   

18.
The dc conductivity of the glasses in the Fe2O3-Bi2O3-K2B4O7 system was studied at temperatures between 223 and 393 K. At temperatures from 300 to 223 K, T–1/4 (T is temperature) dependence of the conductivity was found, however, both Mott variable-range hopping and Greaves intermediate range hopping models are found to be applicable. Mott and Greaves parameters analysis gave the density of states at Fermi level N (EF) = 3.13 × 1020–21.01 × 1020 and 1.93 × 1021–16.39 × 1021 cm–3eV–1 at 240 K, respectively. The variable-range hopping conduction occurred in the temperature range T = 300–223 K, since WD was found to be large (WD = 0.08–0.14 eV for these glasses) and dominated the conduction at T < 300 K.  相似文献   

19.
New compositions in the melt-grown eutectic ceramics field are investigated for thermomechanical applications. This paper is focused on the Al2O3–Sm2O3–(ZrO2) system. The studied compositions give rise to interconnected microstructures without anisotropy along the growth direction. At variance with the binary eutectic Al2O3–SmAlO3, the homogeneity of the microstructure of the Al2O3–SmAlO3–ZrO2 ternary eutectic is less sensitive to the growth rate. Interfaces between the alumina and perovskite phases are investigated by high-resolution transmission electron microscopy (TEM). They are semi-coherent. In stepped interfaces, the facets are parallel to dense planes of each phase. The steps have a dislocation character and may accommodate both misfits. The ternary eutectic displays a very good creep behaviour with strain rates very close to those obtained on other previously studied eutectics in the Al2O3–RE2O3(RE = Y, Gd, Er)–ZrO2 systems. The deformation micromechanisms are analysed by TEM in the three eutectic phases. After creep, dislocations are present in every phase. The activation of unusual slip systems (pyramidal slip in the alumina phase) shows that high local stresses can be reached. The presence of dislocation networks with low energy configurations is consistent with predominance of dislocation climb processes controlled by bulk diffusion.  相似文献   

20.
We have studied the effect of Bi(Mg0.5Ti0.5)O3 additions on the phase formation, structural parameters, microstructure, and dielectric properties of solid solutions in the region of a morphotropic phase boundary in the BiFeO3–BaTiO3 system. Single-phase samples with the perovskite structure have been obtained and the addition of Bi(Mg0.5Ti0.5)O3 has been shown to raise the Curie temperature of the ceramics and improve their dielectric properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号