首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
冯培忠  强颖怀  王晓虹  丁刚 《铸造》2004,53(6):428-431
研究了离心铸造工艺制备的WCp/钢基复合材料的显微组织及断口形貌.结果表明:离心铸造显著的细化了基体材料的组织结构,WC颗粒在复合材料中均匀分布,复合材料断口特征主要表现为脆性断裂,在断口上可以观察到WC颗粒开裂和界面脱粘现象.  相似文献   

2.
电冶熔铸WC/钢复合材料组织及耐磨性研究   总被引:8,自引:2,他引:8  
尤显卿  任昊  斯廷智 《铸造》2003,52(12):1170-1172
用电冶熔铸的工艺方法制备了含40%WC颗粒的WC/钢复合材料。结果表明:WC颗粒在钢基体中发生了适当溶解,界面反应物在两相界面处构成反应层,极少缺陷的界面形态使WC颗粒与钢基体间有着良好的界面结合,有效地把外加载荷传递给WC增强颗粒。磨损试验后发现试验材料表现出了良好的耐磨性,磨损过程主要受硬质相WC颗粒脱落的控制,而高的界面结合强度减缓了WC颗粒脱落的速度。  相似文献   

3.
电冶熔铸WC/钢复合材料中WC的溶解行为   总被引:9,自引:0,他引:9  
用电冶熔铸工艺制备不同WC含量的WC/钢复合材料,研究了WC颗粒在复合材料钢基体中的溶解行为和影响因素.结果表明:随着WC含量的增加,碳化物从钢基体晶界处分布逐渐转向晶内分布;随着WC颗粒尺寸的增大,在WC颗粒与钢基体界面处形成一层反应物,它阻止了WC颗粒在钢基体中的进一步溶解,同时也提高了两相界面的结合强度.通过调整电冶熔铸工艺参数和WC颗粒的尺寸及含量,可以控制WC颗粒在复合材料中的溶解行为.  相似文献   

4.
电冶熔铸WC/GCr15钢复合材料的摩擦磨损特性   总被引:4,自引:1,他引:4  
选择大颗粒WC作增强相,采用电冶熔铸工艺制备了含27%WC粒子的WC/GCr15钢复合材料,观察了复合材料中WC颗粒与钢基体的结合情况;在MM-200型摩擦磨损试验机上研究了室温下复合材料同GCr15钢对摩时的摩擦磨损性能。结果表明:复合材料中的WC颗粒部分溶解于钢基体相,两相界面形成厚达数微米的反应层,有效地提高了界面结合强度。电冶熔铸WC/钢复合材料的耐磨性能比基体材料GCr15钢提高了5倍以上,扫描电镜下的磨痕照片显示:大颗粒WC承担了磨损的主要载荷,实验中没有发生明显脱落的现象,说明界面结合强度在提高复合材料磨损性能方面所起的作用。  相似文献   

5.
电冶熔铸WC/钢复合材料组织及碳化物演变的研究   总被引:2,自引:0,他引:2  
采用电冶熔铸法制备了以GCr15轴承钢为基体,WC颗粒为硬质相的WC/钢基复合材料。借助金相分析、扫描电镜、X射线衍射、透射电镜及能谱分析等方法研究了该材料熔铸态显微组织结构及其演变过程。结果表明:随着加入WC含量和颗粒尺寸的不同,其凝固后组织结构不同。当加入10%WC时,WC颗粒大多溶解于钢液中,冷却后沿晶界析出断续网状复式碳化物,同时基体中析出细小的Cr7C3、β-WC1-x、Fe3W3C颗粒;当加入20%WC时,大颗粒WC外围部分溶解形成Fe3W3C反应层,钢基体中析出共晶碳化物;当加入35%WC时,显微组织主要是以γ-Fe+WC、γ-Fe+Fe3W3C共晶组织为主,多数呈树枝状和锚状,少数为不规则块状;当加入40%或50%WC时,WC颗粒基本保留原始形状且稳定不易溶解,多数呈三角状、矩形,均匀分布。  相似文献   

6.
采用复合电冶熔铸工艺制备了以5CrNiMo钢为基体、WC颗粒为增强相的颗粒增强钢基复合材料,通过宏微观硬度试验、三点弯曲试验和冲击韧性试验对比分析并综合评定复合材料和5CrNiMo钢的各项力学性能,同时采用扫描电子显微镜观察断口形貌并判定断裂机理。结果表明:大量WC颗粒增强体分布在较软的钢基体上,提高了复合材料的整体硬度,淬透性和淬硬性也较好,但塑性比5CrNiMo钢稍差。在950 ℃到1050 ℃淬火时,复合材料的洛氏硬度达到60~66 HRC,抗弯强度达到1600~1650 MPa,均呈现先上升后下降的波动趋势,而冲击韧度变化不明显。对比基体和中小块WC颗粒聚集区,大块硬质相的显微硬度值变化幅度较小。在锻造退火状态下,复合材料为准解理+韧窝的复合断裂机理,而在淬火回火态时,则转变为解理断裂机制。  相似文献   

7.
采用复合电冶熔铸技术,制备了以WC颗粒为增强体,5CrNiMo模具钢为基体的WC/钢复合材料,WC颗粒含量为45wt%。采用金相显微镜、扫描电子显微镜、能谱仪、电子背散射衍射仪和X射线衍射分析仪研究了复合材料中WC的形态和退火、锻造、淬火与回火处理对WC增强体转变的影响。结果表明,WC/钢复合材料中以三角形或矩形的WC为主;通过退火和锻造处理,碳化物溶解,共晶组织碎化;淬火加热温度升高,碳化物溶解加速,基体上分布大量细小的二次碳化物,共晶碳化物变化不明显;回火温度提高,碳化物分布更加均匀化,颗粒圆整性增强,碳化物聚集现象减少。存在的碳化物类型主要为WC颗粒、较大的Fe3W3C颗粒、Fe3W3C或M7C3枝晶状碳化物、弥散分布的Fe3W3C或M23C6二次碳化物。  相似文献   

8.
采取不同激光工艺重熔经过热处理的电冶熔铸WC/钢复合材料,分析了材料表面组织形貌和结构的变化.结果表明,为增加材料对激光的吸收率,重熔前需对试样作预处理,并采用高的激光功率和低的扫描速度.激光功率可以显著增加激光影响区的厚度,而扫描速度的影响相对较小.激光重熔电冶熔铸WC/钢复合材料的强化机制为细晶强化和沉淀强化.由此选用激光功率为2.0 kW,扫描速度为600或800 mm/min较为理想.  相似文献   

9.
电冶熔铸WC/钢复合材料的显微缺陷   总被引:10,自引:1,他引:10  
采用电冶熔铸工艺将废弃的WC钢结硬质合金制备成WC/钢复合材料, 研究了复合材料中显微缺陷的形貌及形成机理.结果表明: 电冶熔铸WC/钢复合材料的气孔及夹杂含量少, 可有效解决WC颗粒的偏析.X射线衍射、扫描电镜和透射电镜分析显示, WC颗粒和钢基体界面上发生了界面反应, 生成了高稳定性的Fe3W3C界面层.  相似文献   

10.
尤显卿  任昊 《铸造技术》2004,25(8):612-614
用电冶熔铸的方法制备4%SiC颗粒增强轴承钢复合材料,对其组织性能进行探索.实验结果发现:SiC颗粒在电冶熔铸工艺中发生分解,原始颗粒没有保留下来,溶入钢基体的Si和C原子在快速冷却下会发生原位反应重新生成细小的原位SiC;磨损试验发现,原位SiC的存在使基体硬度上升,复合材料的整体耐磨性比基体材料相比有明显改善,磨损机理以粘着磨损和磨粒磨损为主.  相似文献   

11.
采用真空实型铸渗法(V-EPC)工艺,成功制备了以高铬钢为基材,WC颗粒为增强颗粒的表层复合材料。结果表明,用含有WC颗粒和高碳铬铁颗粒的预置块制备的不同WC颗粒体积分数的高铬钢基表层复合材料,WC颗粒均匀分布于复合层中,复合层在颗粒熔化、元素扩散互溶、金属液渗入的共同作用下形成由WC、W2C共晶组织,未溶解的高碳铬铁颗粒和各种析出的碳化物组成的组织。  相似文献   

12.
为了提高回转体零件的耐磨性能,延长其使用寿命,采用离心铸造复合工艺,以碳化钨为增强颗粒,HT200为基体,成功制备了外径为200mm,轴向长度为150mm的碳化钨颗粒增强铁基回转体复合材料。采用光学显微镜、扫描电子显微镜等分析方法对复合层颗粒与基体界面进行分析。结果表明,复合材料中复合层在轴向以及径向上均匀分布。颗粒与基材结合良好,无团聚现象。颗粒因为粒径大小的不同而发生溶解,并与基体形成冶金结合。  相似文献   

13.
离心铸造工艺制备WC颗粒增强钢基回转体零件研究   总被引:2,自引:0,他引:2  
通过改进现有悬臂式离心铸造机,成功制备了外径200 mm、内径140 mm、长150 mm的碳化钨颗粒增强钢基回转体复合材料.分析了增强颗粒在离心铸造中的受力情况,推出液态金属中的颗粒在离心力场下的运动规律.采用光学显微镜、扫描电镜和X射线衍射,分析了复合层中碳化鸽颗粒的分布规律,以及复合层的物相组成.结果表明,碳化钨颗粒体积分数在复合层中由内向外逐渐增加,其表层碳化钨颗粒复合层厚度约5 mm,颗粒与基材结合良好,没有夹杂、裂纹等缺陷;颗粒与颗粒之间无缠结团聚现象;颗粒周围部分溶解,复合层中存在Fe,W3 C相,颗粒与基材间形成冶金结合.  相似文献   

14.
在室温条件下,选用三体磨粒磨损试验机,石英砂磨料,研究增强相WC颗粒直径对WC,增强钢基表层复合材料磨损性能的影响,以20%Cr高铬铸铁作为标样,计算相对耐磨性值。结果表明,WC,增强钢基表层复合材料相对于20%Cr高铬铸铁的相对耐磨性,随其增强相WC颗粒直径的变小而降低,当增强相WC颗粒直径大于150μm时,相对耐磨性值达到5左右,而当增强相WC颗粒直径小于100μm时,相对耐磨性值降低到1左右,即与20%Cr高铬铸铁的抗磨粒磨损性能相接近。  相似文献   

15.
为了优化自生TiC颗粒增强表面复合材料的工艺参数,利用真空实型铸渗(V-EPC)方法制备了自生TiC颗粒增强钢基表面复合材料,重点研究了Ti-C和Ti-C-Fe两种自蔓延反应体系的复合材料组织.结果表明,两种体系制备的复合材料复合层均由TiC颗粒和α-Fe组成;Ti-C体系在铸渗的作用下能形成复合层,其厚度为2.9mm,小于预制块的厚度(4mm);Ti-C-Fe体系所获得的复合层厚度与预制块厚度相近.从过渡层到复合层表面,两种体系复合层中颗粒都呈逐渐长大的趋势,Ti-C体系比Ti-C-Fe体系长大的趋势更明显,生成的颗粒也更粗大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号