首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
不同煤阶煤体吸附储存CO_2膨胀变形特性试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
贺伟  梁卫国  张倍宁  李子文  黎力 《煤炭学报》2018,43(5):1408-1415
利用自主研发的气体等温吸附装置并辅以TST3827动静态应变测试系统,针对4种不同煤阶的煤样试件,在恒定温度(50℃)不同吸附压力条件下,研究了不同煤阶煤样CO_2吸附特性及煤样的吸附变形规律。结果表明:煤体CO_2吸附量与煤阶密切相关,在相同的吸附压力条件下,CO_2吸附量随着煤阶的增大而增大;不同煤阶煤样的等温吸附曲线类似,煤样的CO_2过剩吸附量随吸附压力变化曲线呈现出先升高后降低的特点,在8 MPa左右达到最大值;不同煤阶煤体吸附CO_2后引起的变形也具有类似的变化趋势,即随着CO_2压力的增大,体积应变先增大后趋于稳定,体积应变可以用引入CO_2密度的DR模型进行描述,且随着煤阶的增大,体积应变逐渐减小;由于煤体层理结构特征,煤体在垂直于层理方向的应变约为平行于层理方向应变的1.8~2.3倍;煤体体积应变与绝对吸附量在气态CO_2中呈线性增长关系,当CO_2达到超临界状态以后随着绝对吸附量增加体积应变趋于稳定,且煤体吸附相同量CO_2产生的体积应变随煤阶的增大而减小。  相似文献   

2.
为深入了解煤层吸附变形和解吸变形的差异性,开展了软煤在不同含水率和不同气氛条件下的等温吸附/解吸变形试验,同步测试了气体吸附量。结果表明:升压吸附和降压解吸过程中,软煤具有典型的解吸滞后特征,但解吸应变并非滞后于吸附应变,而是表现为解吸应变超前特征;气体完全解吸后,煤样体积较吸附前减小,与通常意义上的残余变形相反,存在一定的富余变形。煤吸附过程产生的塑性变形是导致解吸应变超前和产生富余变形的根本原因。随着煤样含水率增大和气体吸附性增强,煤的塑性变形能力增强,导致解吸应变超前特征显著,富余变形增大。完全解吸气体后,煤样变形客观存在残余变形、宏观可逆、富余变形3种可能情况。  相似文献   

3.
煤的吸附变形与吸附变形力   总被引:1,自引:0,他引:1  
王佑安  陶玉梅 《煤矿安全》1993,(6):19-26,40
设计加工了煤的吸附变形和吸附变形力测定装置。试验测定了五个矿区13个煤样在 CH_4和 CO_2各种压力下的吸附变形量,得出了吸附变形随压力的变化规律。用所设计的刚性测力计,首次直接测定了煤的吸附变形力,试验得出煤的吸附变形力与吸附变形量成正比例。含瓦斯煤层形成煤+瓦斯统一体系,试验证实存在吸附变形力,使瓦斯与地应力两因素密切有关,这对防突和抽放瓦斯研究有一定的指导意义。  相似文献   

4.
为分析沁水盆地煤样孔隙结构以及对吸附CH_4和CO_2两种气体的影响,选取晋煤赵庄矿、潞安常村矿两地煤样,利用压汞法与低温氮吸附实验研究分析煤体孔裂隙结构特点。采用HCA1型高压容量装置研究高阶煤吸附CH_4与CO_2气体特性。结果表明:压汞实验常村煤样压退汞"滞后环"大于赵庄煤样,表明常村煤样具有大量开放性孔隙;低温氮吸附曲线显示两种煤样比表面积与孔隙体积主要集中在2~200 nm孔径,赵庄煤样与常村煤样微小孔所占比例较大,均较易存储气体;高压容量法测量煤样吸附CH_4、CO_2气体实验表明,吸附量随温度与含水率的升高而降低,且煤样孔裂隙越发育,含水率与温度对吸附的影响程度越高。  相似文献   

5.
为了探讨型煤吸附不同压力下的CH_4、N_2以及CO_2的变形特征,利用自行研发的高压瓦斯煤岩吸附-解吸测试系统,对型煤在吸附这3种气体过程中的变形规律进行了研究。结果表明:型煤在不同压力下吸附不同气体的过程都包含抽真空变形、吸附膨胀变形和解吸附压缩变形等3个阶段,且吸附3种气体的膨胀变形规律相似,其轴向变形与环向变形均随时间的增大而逐渐增大;吸附膨胀变形过程中的应变-时间关系都符合Langmuir方程形式;在相同温度和吸附质压力条件下型煤对3种气体的吸附膨胀变形由大到小依次为CO_2、CH_4、N_2;型煤吸附这3种气体膨胀变形过程中的环向应变要大于轴向应变,且随着压力的增大2个方向的变形差异增大。  相似文献   

6.
同一煤层软煤和硬煤物性参数特征不同,导致其对气体吸附行为存在差异。基于实验室测试模拟的方法,测试软硬煤体物性参数的差异性,搭建二元气体竞争吸附实验平台,研究软、硬煤体CO_2和CH_4竞争吸附特性规律。结果表明:除坚固性系数f值外,软硬煤基本参数相近,软煤微孔体积及孔表面积大于硬煤;单组分等温吸附,软煤吸附量大于硬煤,对CO_2吸附量大于CH_4,过程呈先增加后平缓趋势;煤对单一组分的CO_2的吸附量最大,对CH_4的吸附量最小,煤对CO_2+CH_42种混合气体总吸附量介于两者之间;随着吸附平衡压力增加,煤对混合气体的吸附曲线会逐渐远离煤对单一组分的CH_4的吸附曲线,而不断接近CO_2的吸附曲线。  相似文献   

7.
《煤矿安全》2021,52(10):19-23,29
注入CO_2增强煤层气开发过程中,煤储层渗透率的变化受有效应力变化、气体吸附/解吸引起的煤基质膨胀/收缩和气体滑脱效应耦合作用影响;为此,采用稳态法进行CH_4、CO_2渗流试验,研究不同应力环境下煤的吸附应变和气体滑脱效应对CH_4、CO_2渗流过程的影响。试验结果表明:相同应力环境下煤吸附CO_2产生的最大吸附应变为CH_4的1.01~2.39倍,使得CH_4在为煤中渗透率始终高于CO_2;同时随着埋深增加,外部应力增大,吸附应变减小;低应力环境下渗透率随气体压力减小呈"V"字形变化,随着外部应力增大,渗透率与气体压力呈负指数相关;此外,外部应力增大还将强化气体滑脱效应影响,使其更早的主导渗透率的演化。  相似文献   

8.
祝捷  张敏  姜耀东  唐俊 《煤炭学报》2015,40(5):1081-1086
无商业开采价值的煤层被认为是理想的CO2储存场所,煤吸附解吸CO2的变形特征是煤中CO2封存的重要问题。利用煤体吸附-解吸变形试验系统,在预定压力的CO2气体环境下,对取自赵各庄煤矿9号煤层煤样的轴向应变和径向应变进行了近600 h的观测,研究煤样在不同气体压力下吸附、解吸CO2的变形特征。实验结果显示:煤样吸附/解吸CO2产生的膨胀/收缩变形,煤样吸附变形需要12 h甚至更长时间才能趋于稳定,原煤样品的吸附解吸变形呈各向异性;经历了吸附和解吸CO2的煤样均有不同程度的残余变形,气体压力低于1.5 MPa时残余体积应变低于0.6×10-3,可近似认为煤样吸附解吸变形过程可逆。通过煤样吸附解吸变形实验数据的拟合发现,Langmuir方程可反映煤样吸附解吸CO2变形随气体压力的变化规律。  相似文献   

9.
为了探究注气开采煤层气后煤层突出危险性发生的变化,以煤的瓦斯放散初速度ΔP作为重要指标,开展了常压吸附下CO_2和CH_4的放散试验。得到在CO_2纯气体下,白龙山煤矿煤样瓦斯放散初速度ΔP为39.5 mmHg,是纯CH_4气体下ΔP(18.6 mmHg)的两倍多。单因素方差分析结果表明,检验统计量F值为7.18,处于显著影响数值范围内,进一步证实了不同CO_2浓度对煤层突出危险性的显著性。  相似文献   

10.
通过改变20~40目和40~60目煤样的质量配比得到不同粒径分布的煤样,以研究粒径分布与煤样的CH_4和CO_2吸附性能之间的关系。使用低温N_2吸附法来表征煤样的孔隙结构;采用容量法测定它们的CH_4和CO_2吸附性能,并选取Langmuir模型对吸附数据进行拟合。结果表明:当粒径减小时,煤样的微孔含量增加;随着粒径的增加,煤样对CH_4的饱和吸附量缓慢下降。煤样对CO_2的饱和吸附量与粒径之间的变化关系与CH_4的类似,但CO_2的变化趋势更为显著。  相似文献   

11.
侯东升  梁卫国  张倍宁  李畅 《煤炭学报》2019,44(11):3463-3471
CO2驱替开采煤层气过程中,由于CO2和CH4的竞争吸附,CO2/CH4混合气体在运移时CH4体积分数会不断发生改变,进而影响煤体变形和渗透特性。利用自主研发的三轴渗流系统,采用稳态渗流法对焦煤样进行单一组分气体(He,CH4和CO2)和不同配比的CH4/CO2混合气渗流试验。渗流过程中保持温度和体积应力(30 ℃、33 MPa)恒定,并利用LVDT测量煤体的轴向变形。结果表明:① He和不同配比CH4/CO2混合气的渗流过程均受滑脱效应的影响,气体渗透率随入口压力增大呈先减小后缓慢增大的变化;对于非吸附He,入口压力Symbol|@@2 MPa时滑脱效应对气测渗透率的影响要远远大于有效应力效应;② 在一定的体积应力条件下,不同配比CH4/CO2混合气体吸附引起的煤体膨胀应变随入口压力增加而增大,变化规律符合Langmiur方程,且在相同入口压力条件下,混合气体中CO2浓度越高,煤体膨胀应变越大;③ 在考虑有效应力效应、吸附膨胀应变对渗透率的动态影响以及滑脱因子b随煤体渗透率变化的基础上,建立了煤体气测渗透率理论模型,该模型能够描述不同配比CH4/CO2混合气体以及He渗透率随入口压力的变化;④ 随着煤储层CH4/CO2混合气体压力增大或者CO2体积分数升高,基质膨胀应变对煤体渗透率的影响逐渐减小。煤体中靠近孔裂隙的基质吸附膨胀对渗透率的影响(β)随入口压力的增加逐渐减小;CH4/CO2混合气体中CO2体积分数越高,β减小速率越大。  相似文献   

12.
李树刚  白杨  林海飞  严敏  刘宝莉 《煤炭学报》2018,43(9):2476-2483
为进一步明确煤分子吸附多组分气体的热力学机制,应用巨正则系综蒙特卡洛(GCMC)模拟方法,从热力学角度研究了不同温度下等比例CH_4,CO_2,N_2多组分气体在煤分子模型中的吸附行为。研究表明:在晶胞内CH_4呈点状分布,CO_2呈簇状分布,N_2呈带状分布; 3种气体的吸附量、吸附热、吸附熵关系均为CO_2CH_4N_2,吸附势能CO_2CH_4N_2;吸附量与吸附热呈线性正相关关系,吸附热与温度无明显关系;煤分子吸附CH_4,N_2,CO_2的吸附势能与其吸附量成反比,吸附势能不仅受煤分子表面自由粒子色散力影响,也受吸附焓和吸附熵的影响;相同条件下,3种气体的吸附熵与吸附量和温度均呈负相关关系;吸附热力学参数能用来表征煤分子的吸附特性,从热力学角度证实煤分子吸附CO_2优于CH_4和N_2。  相似文献   

13.
含重烃煤吸附CH_4-C_2H_6二元气体实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王林  姜波  杨宏民 《煤炭学报》2016,41(11):2800-2805
为研究含重烃煤层气体的吸附特性,利用自制的混合气体吸附/解吸实验装置,对不同组分配比的CH_4-C_2H_6二元气体进行等温吸附测试,分析了混合气体吸附特征参数与平衡压力和组分配比之间的定量关系,并据此建立了二元混合气体吸附预测模型。结果表明:在相同平衡压力下,煤样对单组分C_2H_6的吸附能力明显大于煤样对CH_4的吸附能力。压力增加,CH_4-C_2H_6二元混合气体中C_2H_6优先吸附,游离相摩尔分数快速下降。混合气体的吸附摩尔比与吸附压力呈指数函数关系,参量与组分配比呈线性关系。通过新模型预测的各组分吸附量与实测结果之间的误差小于5%。  相似文献   

14.
利用核磁共振(NMR)技术测试了CH4与CO2,N2在煤样中相互作用过程的NMR信号,并通过T2谱形态和谱面积对各气体间相互作用的整个过程进行了描述和分析。测试结果表明:CH4在煤中吸附过程的T2谱呈双峰结构,弛豫时间较小的为吸附峰,另一个为游离峰。随着吸附时间和注入压力的增加,吸附总量逐渐增加,但吸附速率逐渐降低。强吸附性气体能置换煤中已吸附的弱吸附性气体,反之效果不明显;置换过程中,大孔隙内的气体比小孔隙内的更容易置换。将弱吸附性气体注入已吸附强吸附性气体的煤中,一定程度上能促使原气体由吸附态向游离态转化;同时,少量的弱吸附性气体也能被吸附,气压越大越明显。NMR测试结果直观反映了CH4与各气体间的相互作用关系。  相似文献   

15.
曹树刚  张遵国  李毅  郭平  刘延保 《煤炭学报》2013,38(10):1792-1799
采用自主研制的煤体高压吸附-解吸变形试验系统,进行了突出危险煤在不同瓦斯压力条件下的吸附-解吸变形全过程试验,探讨了突出危险煤吸附瓦斯产生膨胀变形、解吸瓦斯产生收缩变形这一特有的力学行为。研究结果表明,突出危险煤在不同瓦斯压力下随时间的变形曲线具有相同的演化规律,即先后经历抽真空收缩变形、充气压缩变形、吸附膨胀变形、卸压膨胀变形、卸压后弹性恢复变形和解吸收缩变形等6个阶段;吸附膨胀变形和解吸收缩变形过程中,煤样的应变变化率绝对值均随时间逐渐减小,直至一个相对稳定值,其变形规律服从朗格缪尔方程;煤样的吸附膨胀变形和解吸收缩变形均呈各向异性,垂直于层理方向和平行于层理方向的应变整体变化趋势呈现一致性,但由于煤体内部裂隙分布差异,使垂直层理方向的应变明显大于平行层理方向的应变;煤样吸附膨胀变形值与瓦斯压力关系对二次函数和朗格缪尔方程均具有较好的拟合效果,煤样解吸收缩变形值与原始瓦斯压力呈很好的幂函数关系和二次函数关系;煤样解吸瓦斯后存在一定的残余变形值。  相似文献   

16.
张薄  辜敏  鲜学福  林文胜 《煤炭学报》2010,35(8):1341-1346
使用高精密质量吸附仪IGA-100B对可用的吸附剂进行吸附分离实验。选取椰壳活性炭K01,测定了CH4、N2、CO2在其上于298、308、323 K温度下的吸附等温线和吸附动力学曲线,由此分析了3种气体的吸附性能、热力学及动力学扩散性质,从而得到不同温度下CH4、N2、CO2之间的平衡分离系数(α)和扩散系数(D)之比。结果表明,椰壳活性炭K01可以实现不同温度下CH4/N2、CO2/N2的平衡分离;两种气体的动力学分离与压力和温度有关,在298 K压力较低时,可能实现N2与CH4的动力学分离;而在298 K和323 K时,在较宽的压力范围内,可能实现N2和CO2的动力学分离。  相似文献   

17.
煤吸附瓦斯细观特性研究   总被引:7,自引:0,他引:7       下载免费PDF全文
周动  冯增朝  赵东  王潞  王雪龙 《煤炭学报》2015,40(1):98-102
为研究甲烷吸附孔隙压力对煤膨胀变形的影响,实验应用μCT225kVFCB型高精度显微CT实验系统,对直径为5 mm的细观煤样进行了不同孔隙压力下的吸附瓦斯扫描实验,并通过对其孔隙率与膨胀变形量的观测与分析得到了煤吸附瓦斯细观特性。研究发现:在细观实验中煤样吸附瓦斯会导致煤体孔隙率下降,并发生体积膨胀变形;体积膨胀变形规律符合朗格缪尔方程,且煤样不同位置的孔隙率与体积变化均具有非均匀性。研究结果表明:在吸附瓦斯过程中,煤体骨架体积膨胀会导致煤体孔隙体积减小与外观体积膨胀,且煤体骨架膨胀变形时更倾向于通过挤压煤体原始孔隙来获得膨胀空间。  相似文献   

18.
康志勤  李翔  李伟  赵静 《煤炭学报》2018,43(5):1400-1407
甲烷(CH_4)在煤体中的流动包含"渗流—扩散—吸附/解吸"3个环节,相比粉状煤,采用块状煤体进行CH_4吸附/解吸实验能够更有效地表征煤层中气体的流动状态。为此,依托渭北煤田韩城矿区煤样,利用自行设计的块煤吸附/解吸实验装置,研究了低压下块状同体积原生结构煤、碎裂煤和糜棱煤的CH_4等温吸附/解吸特性;采用显微CT和扫描电镜分析了3种煤样的孔裂隙结构和显微构造,探讨了煤体结构对CH_4吸附/解吸的影响。结果表明:不同煤体结构煤的CH_4吸附/解吸特性有显著差异。结构致密的原生结构煤,孔隙度较低,导致CH_4吸附/解吸平衡时间长,吸附量低,解吸率低;相比原生结构煤,脆性变形碎裂煤张裂隙发育且相互贯通,孔隙度变大,连通性好,导致CH_4吸附/解吸平衡时间变短,吸附量升高,解吸率增大;韧性变形糜棱煤孔隙数量虽增多,但裂隙被揉皱闭合,形成孤立分布的孔隙结构,渗透性变差,导致CH_4吸附/解吸平衡时间最短,解吸速率最快,说明大多数CH_4仅吸附在块煤内构造变形作用下形成的粒间孔隙中。可知,碎裂煤储层是煤层气开发的有利区域;而致密原生结构煤和糜棱煤储层可尝试通过多尺度压裂、注热等技术手段实施储层改造以增加煤体裂隙通道,达到气井增产增效的目的。  相似文献   

19.
对电容器的内外部故障及对应的保护方式进行了分析,明确了现行电容器保护的整定原则,从一、二次设备协调一致的角度对电容器不平衡型继电保护进行了分析比较,给出了该类保护的选型技术原则。文章分别以CH4,CO2及He为吸附气体,进行了相同实验条件下煤的三轴渗流实验,分析和探讨了上述气体对煤的渗透率的影响规律,实验结果对研究煤矿瓦斯抽放与瓦斯突出具有一定的现实意义。  相似文献   

20.
黎力  梁卫国  李治刚  贺伟 《煤炭学报》2017,42(8):2044-2050
当前煤变质程度高、割理不发育及煤储层压力低等因素严重制约着我国煤层气的开采与利用。为完善注CO_2驱替增产煤层气的基础理论研究,利用自主研发的煤层瓦斯驱替装置探讨了不同注气温度与注气压力条件下CO_2对煤层瓦斯驱替置换的效果,并分析了注气温度与压力对煤体的变形与渗透率的影响。研究发现:驱替气体注气压力与温度是影响CH_4产出率与CO_2储存量的关键因素,提高注气温度与注气压力能够在单位时间内驱替出更多的CH_4并存储更多的CO_2;注气压力由2 MPa增至4 MPa,CH_4产出率可提高6.7%~17.4%,CO_2储存量可提高78.60/%~99.7%;注气气体温度从28℃上升至60℃,CH4_产出率与CO_2储存量分别增加40.0%~43.8%和23.8%~38.4%,而驱替置换比降低8.4%~20.2%;驱替压力与温度的增加会使得煤体轴向应变增加98.1%和104.7%;常温注气试验后煤体渗透性下降37.1%~71.3%,提高驱替温度可使渗透率下降幅度降低19.8%~64.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号