首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究中低速磁浮轨道结构的垂向振动传递特性,基于室内试验与振动理论,建立轨道结构频域分析模型,以结构垂向导纳,位移与力的垂向传递率为评价指标分析了结构的垂向振动传递特性。探究了扣件垂向刚度、扣件垂向阻尼、轨枕支承间距、F轨顶面厚度以及轨枕翼缘厚度对于结构垂向振动传递特性的影响。研究表明:中低速磁浮轨道结构的垂向振动可分为低频整体振动与高频局部振动两个阶段,且结构整体振动时力与位移的垂向传递率较高;F轨沿结构纵向上的垂向位移导纳变化并非随着与激励点距离的增大而减小,而是与结构在不同频率下的振型有关;扣件垂向阻尼增大对力与位移的垂向传递均有抑制作用,其中对于力的垂向传递抑制更加明显;扣件垂向刚度、轨枕支承间距、F轨顶面厚度以及轨枕翼缘厚度都会使结构局部刚度发生改变,从而影响力与位移垂向传递的峰值与频率。  相似文献   

2.
为研究中低速磁浮轨道结构的垂向振动传递特性,基于室内试验与振动理论,建立轨道结构频域分析模型,以结构垂向导纳,位移与力的垂向传递率为评价指标分析了结构的垂向振动传递特性。探究了扣件垂向刚度、扣件垂向阻尼、轨枕支承间距、F轨顶面厚度以及轨枕翼缘厚度对于结构垂向振动传递特性的影响。研究表明:中低速磁浮轨道结构的垂向振动可分为低频整体振动与高频局部振动两个阶段,且结构整体振动时力与位移的垂向传递率较高;F轨沿结构纵向上的垂向位移导纳变化并非随着与激励点距离的增大而减小,而是与结构在不同频率下的振型有关;扣件垂向阻尼增大对力与位移的垂向传递均有抑制作用,其中对于力的垂向传递抑制更加明显;扣件垂向刚度、轨枕支承间距、F轨顶面厚度以及轨枕翼缘厚度都会使结构局部刚度发生改变,从而影响力与位移垂向传递的峰值与频率。  相似文献   

3.
将曲线轨道视为周期性离散支撑结构,根据周期性结构的振动特性,通过引入移动荷载作用下曲线轨道梁的数学模态以及广义波数,得出曲线轨道梁频域响应的级数表达,进而求解固定谐振荷载作用下曲线轨道梁平面外弯扭耦合振动的响应特性。通过计算不同频率固定谐振荷载作用下曲线轨梁的动力响应,可以求得曲线轨梁垂向位移频响特性。对单层离散点支撑轨道模型进行计算分析可知:曲线轨道梁一阶自振频率受扣件支点垂向支撑刚度、垂向支撑阻尼系数、扣件支点间距变化影响较大,扣件支点垂向支撑刚度增加时轨梁一阶自振频率提高,垂向支撑阻尼系数增加时轨梁一阶自振频率略有减少,扣件支点间距减小时轨梁一阶自振频率提高;扣件支点间距对曲线轨梁频响特性具有显著的影响,跨中处一阶pinned-pinned共振峰幅值及支点处反共振峰幅值随支点间距的增加而变大;曲线半径对地铁轨道轨梁垂向位移频响特性几乎没有影响。  相似文献   

4.
将曲线轨道视为周期性离散支撑结构,根据周期性结构的振动特性,通过引入移动荷载作用下曲线轨道梁的数学模态以及广义波数,得出曲线轨道梁频域响应的级数表达,进而求解固定谐振荷载作用下曲线轨道梁平面外弯扭耦合振动的响应特性。通过计算不同频率固定谐振荷载作用下曲线轨梁的动力响应,可以求得曲线轨梁垂向位移频响特性。对单层离散点支撑轨道模型进行计算分析可知:曲线轨道梁一阶自振频率受扣件支点垂向支撑刚度、垂向支撑阻尼系数、扣件支点间距变化影响较大,扣件支点垂向支撑刚度增加时轨梁一阶自振频率提高,垂向支撑阻尼系数增加时轨梁一阶自振频率略有减少,扣件支点间距减小时轨梁一阶自振频率提高;扣件支点间距对曲线轨梁频响特性具有显著的影响,跨中处一阶pinned-pinned共振峰幅值及支点处反共振峰幅值随支点间距的增加而变大;曲线半径对地铁轨道轨梁垂向位移频响特性几乎没有影响。  相似文献   

5.
建立曲线轨道解析模型,此轨道模型考虑为具有周期性离散弹簧-阻尼支承的曲线Timoshenko梁。在频域内将曲线钢轨的位移及转角表达为轨道模态的叠加,并将周期性结构理论施加于轨道模型的运动方程,进而在一个基本单元内高效地求解轨道的动力响应。将横向固定谐振荷载作用于钢轨轨头,考虑不同扣件刚度、扣件阻尼、扣件间距及曲线半径,研究上述轨道参数对曲线轨道位移响应的影响。经计算分析可知:钢轨轨头的横向位移响应包括平面内和平面外的位移响应,是钢轨平移和扭转效应的叠加;增加扣件刚度或减小扣件间距可导致轨道系统一阶自振的频率增大,而其幅值减小,对于一阶自振频率以下的频段,钢轨位移幅值也有所减小;随着扣件阻尼的增大,一阶自振的幅值显著下降,对于pinned-pinned共振,随着扣件阻尼的增加,跨中处的钢轨位移增大,而扣件上方的位移有所减小;pinned-pinned共振频率随着扣件间距的增大而减小,而其位移幅值增大;对于曲线地铁轨道,曲线半径对钢轨的横向位移基本没有影响,但对竖向位移影响显著,随着曲线半径的增加,钢轨竖向位移幅值显著下降。  相似文献   

6.
建立包括F形导轨、H形轨枕以及轨道联接件在内的磁浮线路轨道结构有限元模型,在不同荷载条件下,进行了轨枕间距和轨枕下刚度变化对轨道结构的力学性能影响分析,并依据相关的技术标准对轨道结构设计进行了校核。计算结果表明:设计的磁浮轨道结构导轨、轨枕、及联接件均满足设计强度;减小轨枕间距,有利于减小F轨内外反应面垂向位移差;不同轨枕下刚度对F轨内外反应面垂向位移差的影响并不明显。  相似文献   

7.
基于多体动力学原理与有限元法,利用多体动力学软件Simpack建立三维车-轨-桥耦合振动仿真模型,对列车过桥时U型梁及轨道结构竖向和横向振动进行分析,研究扣件、板下弹性支承与桥梁支座参数对U型梁和轨道结构振动的影响,给出各参数合理取值范围。研究结果表明:列车以80 km/h的速度过桥时,1阶模态对U型梁局部振动贡献最大,且在轨道不平顺激励下,容易激发高阶模态,致使U型梁局部振动加剧;U型梁翼缘处横向振动不容忽视,且应重点关注钢轨与轨道板的竖向振动;增大扣件刚度可明显减小钢轨变形,但过大的扣件刚度会使轨道板和U梁振动加剧,建议扣件竖向刚度取值范围为20 MN/m~50 MN/m;增大板下弹性支承刚度可明显减小轨道板及钢轨的竖向变形,但过大的刚度将削弱轨道弹性,不利于减振,建议板下弹性支承竖向刚度取值范围为1.0×103MN/m~1.5×103MN/m;支座刚度在一定范围内增大可减小U梁、轨道板和钢轨的振动,但过大的刚度反而会使振动加剧,建议支座竖向刚度取值范围为3×103MN/m~4×103MN/m。  相似文献   

8.
扣件系统是影响轨道结构振动特性的关键因素,其刚度过大钢轨与轨枕或轨道板耦合作用减弱,钢轨的振动衰减率变小,过大耦合作用增强,会导致轨枕或轨道板振动增强。基于此,应用轮轨系统耦合动力学思想,得出一定轨道和车辆结构参数下的扣件的最佳匹配刚度。并基于铁路轨道设计规范设计制作了减振型扣件样品,通过疲劳测试和动力特性室内测试表明:疲劳前后静刚度损失为1.2kN/mm,扣压力损失为1.67kN,纵向阻力损失为1.6kN,表明扣件系统设计合理,组装疲劳性能合格;垂向激励和横向激励下,在0~5000HZ频段内,减振扣件对轨头、轨腰和轨脚的减振作用均很显著。  相似文献   

9.
轮轨系统固有振动特性对车轮失圆和钢轨波磨的形成和发展具有重要影响。建立普通短轨枕整体道床轨道有限元模型和簧下质量-轨道耦合系统有限元模型,分析扣件刚度、地基刚度、簧下质量及轨枕间距对轨道和耦合系统固有频率的影响。结果表明:轨道1阶垂向弯曲频率随扣件刚度的增大而增大,地基刚度对轨道1阶垂向弯曲频率的影响较小;耦合系统1阶垂向弯曲频率(P2共振频率)随扣件刚度的增大而增大,随簧下质量的增大而减小;P2共振频率随地基刚度的增大而增大,当地基刚度大于300 MPa/m,地基刚度的变化对P2共振频率影响较小;扣件刚度和地基刚度不变的情况下,轨道1阶垂向弯曲频率和P2共振频率随轨枕间距的增大而减小;轨枕间距随机变化可降低Pinned-Pinned共振响应峰值。通过现场力锤敲击与车辆轨道振动测试结果对模型进行验证,仿真结果与现场测试结果基本一致。  相似文献   

10.
轮轨系统固有振动特性对车轮失圆和钢轨波磨的形成和发展具有重要影响。建立普通短轨枕整体道床轨道有限元模型和簧下质量-轨道耦合系统有限元模型,分析扣件刚度、地基刚度、簧下质量及轨枕间距对轨道和耦合系统固有频率的影响。结果表明:轨道一阶垂向弯曲频率随扣件刚度的增大而增大,地基刚度对轨道一阶垂向弯曲频率的影响较小;耦合系统一阶垂向弯曲频率(P2共振频率)随扣件刚度的增大而增大,随簧下质量的增大而减小;P2共振频率随地基刚度的增大而增大,当地基刚度大于300 MPa/m,地基刚度的变化对P2共振频率影响较小;轨道一阶垂向弯曲频率和P2共振频率随轨枕间距的增大而减小;轨枕间距随机变化可降低Pinned-Pinned共振响应峰值。通过现场力锤敲击与车辆轨道振动测试结果对模型进行验证,仿真结果与现场测试结果基本一致。  相似文献   

11.
现场调查某地铁线路上普通短轨枕、先锋扣件和钢弹簧浮置板三种轨道的钢轨波磨特征,并分别进行振动测试,研究钢轨存在波磨时,三种轨道结构的振动特性及减振效果。结果表明:三种轨道结构都是内轨波磨明显,外轨表面不平顺幅值相比内轨都很小,可以忽略不计其影响;波磨主波长频率成分很容易在轨道各零部件(包括隧道壁)振动中激发出来,并且会引起较大幅值的振动;在4 Hz~200 Hz频率范围内,波磨激励下的减振型轨道依然具有良好的减振性能,但是与其最初设计用于的减振效果相比,有明显的下降;先锋扣件轨道短波长波磨会削减隧道壁在高频段的减振效果;钢弹簧浮置板轨道的波磨幅值显著,虽然对其隧道壁的减振效果影响不明显,但是会造成钢轨振动增加。  相似文献   

12.
随着高架桥梁在轨道交通中的广泛应用,轨道交通引起的桥梁结构振动与噪声问题越来越引起人们的关注。以常见的无砟轨道-箱梁结构为研究对象,考虑常用的扣件、桥梁支座及CA砂浆性能参数,基于轨道和桥梁振动理论建立钢轨-轨道板-CA砂浆层-基座-桥梁系统空间实体振动分析模型,以轨道和桥梁结构的位移导纳为考核指标,分析振动在无砟轨道-箱梁结构中的传递,研究各关键参数对振动衰减的影响。计算结果表明:高速列车运行引起的10 Hz以内的低频振动衰减较慢,10 Hz以上的振动随着频率的增加衰减速度逐渐加快;桥梁腹板10 Hz以内的横向振动幅值约为竖向振动的10%,10 Hz以上两者振动水平相当;桥梁支座对桥梁结构低频振动有一定减振作用,而弹性扣件对中高频的桥梁结构振动有减振作用,CA砂浆层刚度对桥梁结构的振动影响较小;低刚度扣件减小桥梁振动的同时,会加剧较高频率的钢轨振动。计算及分析结果可为高速铁路桥梁结构的减振降噪设计提供参考。  相似文献   

13.
基于我国24个城市轨道交通地下线35个断面振动源的实测数据,分析了城市轨道交通地下线的振动源机理和时频特性,并利用钢轨、道床、隧道壁的实测振动数据识别车辆簧下质量和轨道耦合系统P2共振频率,导出扣件刚度;通过力锤敲击试验识别了轨道第1阶自振频率,导出扣件刚度。提出了P2共振和车轮磨耗激励频率是城市轨道交通环境振动和室内二次结构噪声的主要激励源之一,扣件垫板老化后刚度增大使P2共振频率提高,对二次结构噪声的贡献比对环境振动的贡献更为显著。Pined-Pined共振、轮轨粗糙度是城市轨道交通环境噪声和车内噪声的主要激励源。  相似文献   

14.
磁浮轨检车是用来检测磁浮轨道几何参数,保证磁浮列车安全运行的轮式特种车辆。建立了磁浮轨检车横向振动二自由度模型,研究了在磁浮轨道随机路面激励下横向振动幅值的大小及其对激光三角法测量磁浮轨道几何参数精度的影响,结果表明该影响在所要求的测量精度范围之内。  相似文献   

15.
小半径曲线上中低速磁浮车辆-轨道系统的动力响应对车辆安全运营具有重要意义,但当前研究极少涉及。运用有限元和多体动力学方法,建立了中低速磁浮车辆-小半径曲线段高架轨道耦合动力学模型,考虑空间动态磁轨作用以及轨道关键部件的参振作用,分析了小半径曲线上的车辆-轨道系统动力响应。结果表明:二维磁轨关系会过大地估算曲线段磁轨作用力;曲线段磁浮车辆车体主要为2 Hz以下的低频晃动;曲线段连续梁钢构高架轨道的振动主要由0~20 Hz的轨道整体弯扭变形和80~100 Hz的F轨局部弯扭变形引起;轨道垂向振动加速度缓和曲线段大于圆曲线段,横向振动加速度圆曲线段大于缓和曲线段,缓和曲线段振动加速度对车速变化更为敏感。研究结果可为曲线段磁浮高架轨道设计和车辆安全运营提供理论依据。  相似文献   

16.
当列车通过浮置板轨道和减振型扣件轨道等减振区段时,车内噪声较大,影响乘客的舒适性。滚动噪声是车内噪声的重要组成部分,而钢轨声功率反映了钢轨滚动噪声能量的大小。为了研究地铁隔振措施对钢轨声功率特性的影响,对不同隔振措施下钢轨垂向振动沿纵向的轨道衰减率和钢轨加速度导纳进行了测试,计算分析了单位简谐点激励下的钢轨垂向振动相对声功率级。结果表明所测隔振措施通过降低轨道垂向刚度,改变了钢轨垂向振动的加速度导纳幅值和轨道衰减率。钢弹簧浮置板道床和减振垫浮置板道床提高了三分之一倍频程中心频率200 Hz以下的轨道衰减率,而GJ-III型减振扣件长枕整体道床的衰减率在中心频率2 500 Hz以下小于非减振型扣件长枕整体道床。钢轨在受到单位简谐点激励作用时,浮置板道床的钢轨声功率在200 Hz以下明显增大,而GJ-III型减振扣件长枕整体道床的钢轨声功率在500 Hz以下明显增大。  相似文献   

17.
为探究车轮谐波磨耗对轮轨间蠕滑特性的影响,建立了4种不同轮轨关系下的车辆-轨道耦合动力学模型。基于多体动力学理论,以实测车轮谐波磨耗为依据,对比分析了4种模型的轮轨振动特性,得到最能反映真实情况的轮轨关系模型。基于柔性轮轨分析车轮谐波磨耗对轮轨蠕滑特性的影响,并进一步探究谐波磨耗下扣件刚度和速度对蠕滑特性的影响。结果表明:柔性轮下的振动响应要高于刚性轮,而刚性轨下的振动响应要大于柔性轨。其发生机理表现为柔性体的固有模态与谐波激励频率相近引发模态共振,使得柔性体的振动响应大于刚性体。对比分析结果表明多柔体更能反映轮轨真实接触状态;车轮谐波磨耗的阶次和幅值对柔性轮轨关系下的蠕滑特性影响显著,整体呈现出随阶次和幅值增大而增大的趋势,且高阶次下,幅值对蠕滑特性的影响更加显著。进一步发现扣件刚度对蠕滑特性的影响与速度呈现相关性,当速度低于250 km/h时,扣件刚度对蠕滑率/力的影响并不显著,但仍呈现出随刚度增大而减小的趋势;当速度高于300 km/h时,扣件刚度对蠕滑率/力的影响比较明显,呈现随刚度增大而增大的趋势。  相似文献   

18.
采用半解析方法研究了层状饱和地基-轨道-列车耦合系统的动力响应问题。层状饱和地基由任意水平饱和土层和下卧饱和半空间组成,轨道采用以无限长欧拉梁模拟的钢轨、连续质量块模拟的轨枕和Cosserat模型模拟的道砟组成的三层系统,列车模拟为弹簧和阻尼元件连接的多刚体系统。振动输入由钢轨的竖向不平顺提供。通过地基表面轨道中心处竖向位移与道砟位移相等实现层状饱和地基和轨道的耦合,通过在车轮与钢轨间引入Hertizian接触弹簧来实现轨道与列车的耦合,首先求得频率-波数域内解答,然后通过Fourier逆变换求得时间-空间域内振动响应。文中验证了方法的正确性,并进行了数值计算分析,研究表明钢轨不平顺引起的列车动荷载振动频率较低时,随着列车运行速度的增大地基表面位移幅值逐渐增大;振动频率较高时,列车运行速度对位移幅值峰值的影响不明显,但列车驶过后地基的振动明显增大,振动时间变长。  相似文献   

19.
建立准确表征一系悬挂轴箱螺旋弹簧波动特性的力学模型,运用动刚度矩阵法求解,研究其对悬挂系统隔振性能影响。结合基于格林函数法的车辆-轨道耦合动力学模型,引入弹簧刚度频变特性,对比分析考虑一系螺旋弹簧频变刚度前后车辆动力学性能之间的差异。结果表明,动刚度矩阵法可以精确求解螺旋弹簧随频率变化的动刚度特性,在一阶模态振动频率后弹簧刚度值呈现103等级的剧烈变化,该结果与有限元模型结果一致;一系螺旋弹簧的动态频率特性导致轮轨激励由车轮至构架的振动位移传递率提高到接近于1,而对车体的振动传递率提高到了10-3左右;在整车车辆-轨道动力学计算中,其对轮轨振动影响较小,但车体与构架出现了较高的高频振动能量峰值。包含一系悬挂动刚度的车辆模型更接近实际,为了降低车辆振动,应尽量提高一系螺旋弹簧自振频率并降低动刚度变化幅值。    相似文献   

20.
李小珍  耿杰  王党雄  张迅  梁林 《工程力学》2017,34(12):210-218,247
为了探讨中低速磁浮列车-低置梁系统竖向耦合振动,基于SIMPACK和ANSYS联合仿真,首先建立了中低速磁浮列车-桥梁/低置梁系统竖向耦合振动模型,以某试验线20 m简支梁现场动载试验为依据,验证此方法的可靠性。随后,根据所建立的中低速磁浮列车-低置梁系统竖向耦合振动模型进行动力仿真分析,并探讨了不同参数对低置梁竖向动力响应的影响。结果表明:低置梁自振频率较高,一阶竖弯达32.9 Hz;低置梁框架跨中竖向动位移及加速度均较底板中心大,框架振动属于高频振动(相对于底板振动),在50 Hz~100 Hz加速度显著大于底板中心;磁浮列车荷载加载频率较高,该加载频率(整数倍)易与低置梁自振频率重合或接近而产生共振效应,显著放大低置梁动力响应;随着支撑脱空长度的增大,低置梁动力响应显著增大,且增速加大,随着路基刚度和底板厚度的增大,低置梁动力响应减小,且减小的幅度变小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号