首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
古交区块煤层气地球化学特征及其成因   总被引:1,自引:0,他引:1       下载免费PDF全文
汪岗  秦勇  解奕炜  申建  黄波 《煤炭学报》2016,41(5):1180-1187
基于古交区块煤田地质勘探资料以及煤层气井排采气体组分、甲烷碳氢同位素质谱等相关测试分析,查明了该区块煤层气地球化学特征、成因及其地质控制因素。结果显示:煤层气组分主要以甲烷为主,组分浓度介于85.36%~99.23%,其次为氮气,重烃含量最少,属于干气~特别干的气体。煤层气δ13C1介于-62.24‰~-40.70‰,δD介于-244.3‰~-229.3‰。以热成因气为主。煤层气δ13C1随着煤级增加呈变重趋势,随着埋深增加而变化的趋势不明显。古交区块矿化度整体从北向南逐渐增加,说明该地区水动力条件从北向南逐渐增强。南部刑家社矿区甲烷碳同位素较重,而北部镇城底矿区、西曲矿区以及马兰矿区的部分地区甲烷碳同位素较轻。研究区北部(MCQ9)煤层埋藏浅,露头发育,煤的Ro,max介于1.14%~2.18%,且水文地质条件适宜,形成了生物成因与热成因混合气体。  相似文献   

2.
《煤矿安全》2021,52(9):1-9
以准噶尔盆地南缘阜康矿区为研究区,对研究区内10口煤层气井的排采气进行了气体组分、甲烷碳同位素、乙烷碳同位素及二氧化碳碳同位素测试,并结合研究区特殊的地质环境特征对煤层气的成因进行了判别。研究发现:阜康矿区煤层气组分包括CH_4(81.79%)、CO_2(14.36%)、N_2(2.28%)和C_(2+)(0.99%),煤层气甲烷碳同位素值δ~(13)C_1分布范围为-58‰~-49‰,平均值为-53‰,乙烷碳同位素值δ~(13)C_2分布范围为-32.2‰~-23.1‰,平均值为-28.1‰,二氧化碳的碳同位素值δ~(13)C(CO_2)分布范围为+8.5‰~+14.2‰,平均值为+12.9‰;研究区煤层气为热成因和次生生物成因的混合成因气,其中的热成因气为热降解成因,次生生物气主要是醋酸发酵形成的产物;急倾斜煤层和火烧区为微生物进入煤层提供了通道;温度适宜、偏酸性且矿化度较低的地下水环境为微生物提供了生存环境;地下水渗流方向与煤层气运移方向相反,具有水力封堵控气作用;火烧区滞水层与煤层顶底板一同对煤层气藏进行有效圈闭,保证了混合成因气的储存。  相似文献   

3.
王红冬 《煤》2005,14(4):17-19
详细叙述了古交矿区8#煤中黄铁矿硫的形态特征及分布,应用光电子能谱(XPS)对8#煤中有机硫的存在形态进行了测试,并采用带能谱和波谱的扫描电镜对8#煤中不同显微组分中的有机硫进行了测定,对煤中有机硫的分布特征进行了总结。该研究对进一步开发中—高硫煤中新的脱硫方案,以及煤炭产品的加工转化和洁净煤技术具有重要的现实意义。  相似文献   

4.
煤层气藏的水文地质条件是控制煤层气运移、散失、分布和富集的重要因素之一。以西山煤田古交矿区为研究对象,分析产出水离子浓度、水质水型、矿化度和煤层含气量分布特征,结合地下水动力场分布特征,划分区域水文地质单元,并讨论不同单元内含气量分布特征及地质控制机理。结果表明:(1)该区煤层气井产出水离子以Na~+,HCO_3~-为主,水型主要为NaHCO_3型,该区煤层气井产出水矿化度介于632~2 512 mg/L,属于淡水-微咸水;(2)根据折算水位和矿化度分布特征将矿区划分为补给径流区、滞留区以及过渡地带的弱径流区3种水文地质单元,滞留区含气量最高,弱径流区次之;(3)古交矿区煤层气的富集成藏受构造、水文地质条件双重控制,在屯兰中部形成单斜-水力封堵型煤层气藏,为全区煤层气最为富集区,东曲断层比较发育,形成地垒-水力封堵型煤层气藏,为煤层气较为富集区。  相似文献   

5.
古交矿区煤岩煤质特征分析   总被引:1,自引:0,他引:1  
通过对古交矿区各煤层煤岩的分析,总结了该矿区的煤岩特征。有利于该矿区的煤层分析与对比。  相似文献   

6.
为研究山西古交矿区地层电性参数,提高瞬变电磁探测异常区的解释精度,以古交矿区屯兰煤矿瞬变电磁探测结果为研究对象,采用探采对比和统计学原理进行研究分析。研究结果表明该研究区低阻异常区的门槛值为5Ω·m,高阻异常区的门槛值为200Ω·m,高于200Ω·m应解释为陷落柱,当达到260Ω·m时应解释为断层。  相似文献   

7.
山西阳泉矿区韩庄煤层气研究   总被引:1,自引:0,他引:1  
近年来,煤层气研究与开发正在兴起,山西沁水煤田作为煤层气工业基地之一,煤层气资源储备丰富,具有广阔的开发远景。山西阳采矿区韩庄区位于沁水煤田北端,对其进行区域、地层等深入的研究将有助于今后的工作。  相似文献   

8.
根据区域地质构造、含煤地层、煤质及项目施工的煤层气钻井、生产试验井等方面的分析研究,总结了古交区块储层含气性、渗透性、生产数据等方面的成果,指出古交煤层气勘探目标和前景。  相似文献   

9.
《煤炭技术》2021,40(5):96-99
为了揭示韩城矿区山西组煤层气储层特征,在对地质背景进行深入研究的基础上,利用扫描电镜、压汞实验以及X-CT等方法,对韩城矿区山西组的3~#煤和5~#煤储层物性进行分析,从孔隙结构、裂隙结构、孔隙度、渗透率等方面对储层性质进行评价研究。研究表明:该区煤层气储层主要以微小孔(孔径100 nm)为主,占比达到60%以上;裂隙以Ⅳ类为主,裂隙宽度5μm,长度300μm;储层孔隙度3.5%~7.5%,平均值4.45%,属于特低孔隙度;储层渗透率0.12~0.54 mD,平均0.32 mD,总体上为低渗透储层。  相似文献   

10.
通过对古交矿区各煤层煤岩的分析,总结了该矿区的煤岩特征,有利于该矿区的煤层分析与对比。  相似文献   

11.
晋城地区煤层甲烷碳同位素特征及成因探讨   总被引:3,自引:0,他引:3  
段利江  唐书恒  刘洪林  李贵中  王勃 《煤炭学报》2007,32(11):1142-1146
对取自沁水盆地南部晋城地区的煤芯样中的解吸气进行了甲烷碳同位素测定.结果表明,随着解吸过程的进行,δ13C1值逐渐变重,δ13C1值和解吸时间呈对数关系,δ13C1值变重趋势具有先快后慢的阶段性特点.取样条件和取样时间对煤层甲烷碳同位素值有较大影响,在某一个时间点所取气样的同位素值不一定代表该井原地气体的同位素值.在采样进行同位素测定时,煤样全部解吸气体的碳同位素的平均值才能代表该井煤层气的原地气同位素值.在实际操作中,可以用罐装煤样气体解吸半量时间点所取气样的同位素值来代表全部解吸气体的同位素平均值.与煤岩热模拟实验所得到的经验公式计算结果比较,晋城地区实测的煤层甲烷碳同位素值偏轻.晋城地区煤层甲烷碳同位素的组成特点受解吸-扩散-运移过程中发生的分馏效应以及其他多种因素的共同制约.  相似文献   

12.
郑启明  刘钦甫  徐占杰 《煤炭学报》2015,40(9):2159-2165
煤层气地球化学研究对象以煤层甲烷为主,对非烃组分氮气地球化学特征的研究相对较少。采用气相色谱和同位素质谱方法,分析了沁水盆地北部阳泉-寿阳地区煤层排采气中氮气的地球化学特征。结果表明:采集的排采气样中氮气体积分数平均为1.46%,其中大气源氮气为1.05%,有机成因氮气为0.41%。有机成因氮气的δ15N平均为+1.5‰,属于热氨化和热裂解混合成因。阳泉-寿阳地区排采气中有机成因氮气同位素组成主要受地下水动力条件、人为排采活动以及解吸-扩散-运移效应影响,其中,较强的地下水动力条件导致其同位素组成偏轻;产气量越高,氮气同位素组成越重;煤层埋深越深,氮气同位素组成越重。依据多元线性回归分析的结果,各影响因素对有机成因氮气同位素组成影响的程度由高到低依次为:地下水动力条件>排采>解吸-扩散-运移。  相似文献   

13.
陈世达  汤达祯  陶树  赵俊龙  李勇  刘文卿 《煤炭学报》2016,41(12):3069-3075
基于沁南—郑庄区块35层次煤层气井注入/压降及地应力实测数据,系统分析了郑庄区块地应力垂向变化规律,并在此基础上探讨了煤储层渗透性、含气性、气水产出垂向差异性演化,揭示了郑庄地区深部煤层气界限。郑庄区块地应力状态在垂向上发生转换:575 m以浅,σHσvσh,表现为大地动力场,现今地应力状态为压缩状态;575 m~675 m,水平主应力较浅部有所降低(σH≈σvσh),表现为准静水压力场,现今地应力状态为过渡状态(由压缩状态过渡为拉张状态);675~825 m以深,σvσHσh,表现为大地静力场型,现今地应力状态为拉张状态;825 m以深,σHσvσh,现今地应力状态为压缩状态。煤储层试井渗透率随埋深的变化与地应力场状态的转变基本一致,其实质是地应力作用下煤体孔隙结构的变形与破坏;含气量与埋深之间存在一个"临界深度"范围(800~1 000 m),超过此埋深范围之后煤层含气量随埋深增大而趋于降低。整体来说,825m以深煤层气资源处于地应力转换状态和(或)含气量"临界深度"之下,其赋存和开发地质条件发生转换,气体采收率相对较低,属于深部煤层气范畴。该埋深(825 m)以下煤层气开发将面临"低渗透率、低含气量、高地应力"的挑战。  相似文献   

14.
巢海燕  王延斌 《煤炭学报》2016,41(7):1769-1777
为研究临汾地区煤层气成因类型,在综合前人研究成果的基础上,研究分析了煤芯解吸气成分、井口气成分、碳同位素特征、煤层水地球化学特征及水动力等条件,认为研究区煤层气保存条件整体良好,但甲烷碳同位素偏轻、重烃组分偏少,表明受到了一定因素或次生作用的影响。对比分析导致甲烷碳同位素偏轻、重烃组分偏少的次生改造作用,认为扩散-运移的影响作用最大,还认为临汾区块东缘和薛关一带具备形成次生生物成因气的条件。结合Whiticar图版,认为临汾区块煤层气主要为受到运移-扩散次生作用影响的热成因气,J81井5号和8号煤、J25井8号煤层气为次生生物成因气,J25井5号煤和J60,J62,J11,J80井煤层气为热成因气和次生生物气的混合气。薛关一带和东缘刁口—蒲县东一带虽有次生生物气的补充,但后期保存条件较差,含气量普遍偏低。薛关断裂以西的构造斜坡带,热成因气保存条件良好,含气量高。  相似文献   

15.
韩城区块煤层气井产出煤粉特征及主控因素   总被引:6,自引:0,他引:6       下载免费PDF全文
魏迎春  曹代勇  袁远  朱学申  姚征  周济 《煤炭学报》2013,38(8):1423-1429
煤层气排采过程中的煤粉问题是制约煤层气井产能的主控因素之一,为了揭示煤粉的产出机理和查明煤粉的来源,以韩城区块为实验区,通过现场观测和描述,采用透光显微镜、激光粒度测试仪、X射线衍射和反射偏光显微镜,从浓度、粒度、成分等方面对煤层气排采中产出的煤粉特征进行分析,结合煤层气主力开发煤层特征,指出了煤粉产出的主控因素有井型、完井工艺、排采制度、煤岩特征、煤体结构和煤层结构等,而煤体结构(构造破坏)是煤粉产出的首要控制因素。  相似文献   

16.
李志强  鲜学福  黄滚 《煤炭学报》2012,37(Z2):395-400
针对当前我国煤层气富集区预测中预测位置不准、难以定量化描述、精度不高等不足,提出了地应力地温场中煤层气富集区定量预测的力学方法。建立了应力、温度影响下的煤层气压力预测方程、含气量预测方程,预测方程体现了地应力和地温对煤层气压力、含气量、孔隙率的影响,其中,应力和温度通过影响煤层气压力进而影响吸附量,通过影响煤层气压力和孔隙率进而影响游离量,温度还通过影响吸附常数b影响吸附量。以重庆沥鼻峡盐井矿区为研究区,进行了Kaiser声发射原岩应力测试实验、不同温度下的煤体甲烷等温吸附实验和不同埋深的孔隙率测定实验。实验表明,吸附常数a随温度变化不明显,b随温度升高线性减小。以实验为基础,结合现场实测数据和实际地质资料,定量化预测了矿区煤层气含气量分布。以煤层气含量为判别指标,按照富集程度不同,将研究区划分为两级富集区。预测方法克服了以往煤层气富集区预测定性描述、预测不准和精度不高的不足。  相似文献   

17.
山西沁水盆地煤层气有利开采区块研究   总被引:2,自引:1,他引:1  
煤层气系统是一个由煤层、煤层中所含甲烷及其围岩组成的天然系统。作为一种非常规天然气,煤层气的生成、聚集和保存不同于常规油气系统。山西沁水盆地作为我国一个特大型石炭-二叠纪含煤盆地,具有非常丰富的煤层气资源。本研究通过对盆地地球物理特征和地质构造演化的深入分析,阐明了地质构造条件对煤层气富集的控制作用。研究结果表明:沁水盆地经历了多期构造演化,地质构造与煤层气成藏之间具有密切关系。在构造次级向斜部位含气量增高,而背斜部位含气量降低,在正断层附近含气量也明显降低。综合分析还表明,盆地北部阳泉-寿阳区域,是煤层气成藏有利区域之一,但不利于煤层气高产;盆地南部晋城-沁水一带及其以北,不仅是煤层气成藏有利区域,而且利于煤层气高产;盆地中部沁源地区是煤层气成藏和高产的有利区域;盆地东部的屯留-襄垣区域是煤层气成藏有利区域之一,但可能不利于煤层气高产。  相似文献   

18.
柳林地区煤层气井排采过程中产水特征及影响因素   总被引:4,自引:0,他引:4       下载免费PDF全文
以实际生产数据为基础,结合流体包裹体测试分析,从古今水文地质特征、排采模式、压裂工艺等方面综合研究了柳林地区煤层气井排采过程中的产水特征及其影响因素。结果表明:柳林地区煤储层产水特征是多种因素共同作用的结果,山西组煤层顶板砂岩含水层中古流体呈现滞留特征,富水性相对较弱,其现今产水量的高低与岩层中裂隙的发育程度有直接关系。太原组煤层顶板灰岩含水层在早期与地表淡水发生了沟通,富水性较强。当以不同的模式进行排采时,受压裂强度和煤层与顶板含水层差异沟通的影响,表现出D,A,B,C四种模式的产水量逐渐增大的规律。进一步指出,为降低水动力的影响,适当区域可选用水平井开采;煤层气开发由北东向南西逐步推进,有利于煤层的排水降压;储层改造过程中应降低压裂缝的规模,尤其是纵向缝的高度。  相似文献   

19.
煤层气是一种重要的能源资源,但在开采过程中会产生大量的煤层气排水。为了有效处理煤层气排水中的大量有机物和无机盐等污染物,解决煤层气排水难以有效处理的问题,本研究提出了纳米陶瓷电絮凝技术深度处理煤层气排水的方法。试验结果表明:当电解时间60min,极板间距12mm,电流密度9mA/cm~2,极板对数2对和抽吸泵出口压力为0.08MPa时,该工艺处理后的COD、SS、全盐量、Fe和石油类等污染物指标均可满足《地表水环境质量标准》(GB3838—2002)中Ⅴ类水体标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号