首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
于远祥  洪兴  陈方方 《煤炭学报》2012,37(10):1630-1636
基于支承压力作用下回采巷道两帮煤体的力学模型,分析了煤体与顶底板界面应力、煤体轴力的基本分布规律,首次对煤帮水平位移进行了力学推导,建立了极限平衡区宽度新的理论计算公式,讨论了塑性条件下煤帮极限平衡区宽度的主要影响因素。结果表明:① 极限平衡区煤体的垂直应力、顶底板与煤层界面的剪应力及其水平压力均呈双曲函数分布;② 煤帮处煤体垂直应力的大小随巷道高度及顶底板与煤层界面力学参数的改变而改变,其水平位移与弹塑性界面的侧压力系数、峰值应力及煤体极限平衡区宽度成正增长关系,与煤体综合弹性模量成反比;③ 煤体极限平衡区宽度与巷道埋深、上覆岩层平均容重、煤体与顶底板界面的强度参数、应力集中系数及侧压力系数、巷道高度及煤体综合弹性模量密切相关,随巷道埋深和巷道高度的增加而增大,随煤体与顶底板界面内摩擦角和黏聚力的增加而减小。最后,通过工程实例,验证了分析结果的合理性。  相似文献   

2.
王树明  王磊 《采矿技术》2021,21(5):104-108
针对文家坡煤矿回采巷道,建立了回采巷道煤帮的弹性地基梁受力模型,分析了煤帮任一界面上的剪力计算方法,推导了巷道埋深、顶板上覆岩层容重、煤帮应力集中系数、煤帮极限平衡区及弹性区的宽度、煤帮下卧底板的弹性特征值及煤帮弹塑性界面上煤体抗剪强度的关系式。以文家坡煤矿4102运顺巷道为例,运用上述理论计算了煤帮极限平衡区宽度和底板破坏深度,为巷道底板的支护设计提供了科学可靠的理论依据。  相似文献   

3.
不同工况下区段煤柱两侧支承压力分布及岩体变形存在显著差异,考虑煤柱两侧不同支承压力对煤柱整体稳定性的影响,基于大采高区段煤柱的弹性力学计算模型,分析了支承压力下煤柱任一单元岩体的应力应变分量。通过建立大采高煤柱弹塑性界面上岩体的柱条模型,确定在0.65倍煤柱高度处单元岩体将首先发生水平拉伸破坏,利用虎克定律提出了该单元岩体极限拉应变与煤柱极限平衡区宽度的关系式。依据煤柱破裂区岩体的受力特征,运用摩尔库伦准则推导了煤柱破裂区宽度的计算公式。结果表明:(1)煤柱极限平衡区宽度与岩体极限拉应变和弹性模量反相关,与煤柱埋深和煤柱高度正相关;(2)煤柱高度及其与顶底板的界面摩擦角是影响破裂区宽度的关键性因素;(3)煤柱两侧不同工况下,煤柱岩体极限拉应变与其所受侧压呈正变关系,区段煤柱采空区侧所受侧压较巷道侧偏大,采空区侧岩体的极限拉应变也相应较大,表现为采空侧极限平衡区宽度较巷道侧偏小。最后,将上述理论公式应用于陕北某矿30109工作面大采高区段煤柱极限平衡区和破裂区宽度的分析计算,给出了该工作面两侧区段煤柱的合理宽度及其支护方案。工程应用表明,30109工作面区段巷道围岩变形控制效果良好,满足...  相似文献   

4.
为探究煤巷开挖围岩应力分布特征,并基于此分析巷帮破坏机制及其影响因素,采用数值试验研究手段分析了煤巷开挖围岩垂直与水平应力分布规律及巷帮高度的影响,围岩应力变化全过程;构建了开挖卸荷应力路径下巷帮破坏机制理论模型,将受卸荷应力作用的巷帮煤体分为破裂区、塑性区及弹性区,推导了巷帮煤体破裂区及塑性区应力、破裂区宽度、非弹性区范围及水平位移的解析表达式。研究结果表明:开挖将导致巷帮一定范围内煤体所受垂直应力增加,水平应力不断降低,二者之间差值不断加大,围岩逐渐由三向受压变为只有两向受压,应力平衡状态被打破,变形破坏将会发生;应用高预应力强力锚杆支护后,能够在巷道围岩内部产生一定范围压应力场,巷帮煤体又逐渐恢复到三向受压状态。经工程实例验证可知,在一定范围内提高支护强度,能够降低巷帮变形破坏程度,但影响逐渐减弱。  相似文献   

5.
《煤矿安全》2019,(12):197-202
针对义棠煤矿10502工作面回采巷道发生强烈底鼓的现象,采用现场实测、室内岩石力学试验及理论分析相结合的方法,建立回采巷道底鼓力学模型,对底鼓机理及其控制对策进行研究。结果表明:对于破碎底板围岩,在两帮煤体传递的支承压力作用下形成塑性滑移线场,当一定宽度内煤体底板围岩产生的被动朗肯区宽度等于巷道宽度时,定义这一宽度为底鼓影响区;底板围岩破碎的回采巷道发生底鼓的主要原因是底鼓影响区内的垂直应力超过底板岩体的极限载荷;通过施加底角锚杆,既能切断底板塑性滑移线,阻止围岩移动,又能起到"销钉"作用,对底板"弱面"进行加固,提高其抗剪切强度,从而控制底板围岩;当底角锚杆的支护强度达到0.5 MPa时,监测结果显示随着工作面推进回采巷道最大底鼓量仅为86 mm。  相似文献   

6.
为合理确定区段小煤柱宽度及沿空巷道支护方式,以阳泉五矿8407综放工作面为例,基于采空侧基本顶断裂力学模型及围岩极限平衡理论,理论计算了合理煤柱宽度的上下限值,采用钻孔应力监测方法,对回采过程中煤柱内部应力分布进行了实测,进而确定沿空巷道支护参数。研究结果表明:沿空掘巷小煤柱宽度合理范围为9.03~11.80 m,取10 m为宜,煤柱侧0~3 m范围煤体发生塑形破坏、3~6 m范围为弹性核区、6~10 m范围靠近8409采空区承载能力弱,因而在8407回风巷掘巷期间采用锚杆+长短锚索一次支护,回采期间对煤柱帮进行3 m钻孔注浆加固二次支护,现场实测数据显示,8407回风巷沿空掘进期间围岩变形量较小,回采期间顶板、注浆加固煤柱帮、实体煤帮最大变形量分别为0.20、0.05、1.00 m,围岩变形处于可控范围,实现了综放工作面安全高效回采。  相似文献   

7.
 摘要:为分析煤层巷道开挖后两帮煤体应力分布及变形规律,进而确定合理、有效的支护方式,采用弹塑性理论计算以及现场实测相结合的研究方法,以镇城底矿生产实际为背景,理论分析得到该矿煤层巷道两帮煤体的应力分布形式、煤体应力极限平衡区范围;实测分析煤层巷道两帮煤体应力值及巷道围岩收敛变形规律,理论及实测结果较为吻合。得知巷道围岩开挖充分变形后,煤体应力及围岩变形量在实践观测的后期阶段所受煤层采动影响较弱。  相似文献   

8.
针对综放剧烈采动影响煤巷窄煤柱出现的破裂失稳问题,采用理论分析、数值模拟和现场实测等相结合的研究方法,探讨窄煤柱破裂失稳机理及其控制技术。结果表明:1)受上覆岩层破断回转运动影响,窄煤柱帮发生明显水平挤压运动,造成浅部煤体挤压、错动和破碎,变形破坏主要发生在煤柱帮中上部区域;2)关键块回转运动行为将对沿空巷道围岩产生沿铅垂方向的支承压力σj,同时还将对窄煤柱产生水平力σ_d,在此复杂应力作用下沿空巷道窄煤柱发生破裂失稳,由浅至深煤体应变演化过程为拉应变→压应变→拉应变;3)阐明该类巷道控制原理,提出"高强锚杆支护+顶板锚索槽钢组合结构+煤柱帮锚索加固"的综放沿空巷道支护方案并进行现场应用。现场工程实践表明,该技术可有效控制综放沿空巷道围岩变形。  相似文献   

9.
为了解决新桥煤矿孤岛工作面沿空掘巷的支护难题,以孤岛工作面支承压力分布和回采巷道围岩变形规律的理论为基础,采用煤岩体内塑性区极限平衡理论,导出煤柱宽度的理论计算公式,结合实际地质条件,确定了合理的煤柱宽度为4.5 m。设计合理的支护参数以锚网索为基本支护,沿空帮采用预应力桁架支护技术,不仅控制了煤柱整体位移,而且进一步限制煤柱松散破碎变形,保障了工作面的安全回采。  相似文献   

10.
为了解决新桥煤矿孤岛工作面沿空掘巷的支护难题,以孤岛工作面支承压力分布和回采巷道围岩变形规律的理论为基础,采用煤岩体内塑性区极限平衡理论,导出煤柱宽度的理论计算公式,结合实际地质条件,确定了合理的煤柱宽度为4.5 m。设计合理的支护参数以锚网索为基本支护,沿空帮采用预应力桁架支护技术,不仅控制了煤柱整体位移,而且进一步限制煤柱松散破碎变形,保障了工作面的安全回采。  相似文献   

11.
马金魁 《煤炭工程》2021,53(2):54-59
针对煤巷掘进过程中易发生煤与瓦斯突出的问题,对煤巷掘进工作面煤体的卸压区宽度范围进行了理论分析,得出了卸压区宽度受煤层界面摩擦因数、煤体抗拉强度、煤层厚度、煤岩容重、侧压系数及煤层开采深度等多种因素的影响,采用灰色关联分析法确定了煤体的侧压系数为卸压区宽度的主控影响因素,并采用现场实测的方法验证了卸压区宽度数值分析的正确性。提出了煤巷掘进工作面进行煤与瓦斯突出防治措施应用时,应主要以施加外部荷载的防突措施为主,提高煤体的侧压系数以破坏煤体完整性并增大卸压区宽度,使卸压煤体厚度增大从而抵御煤与瓦斯突出。研究结论可以为煤巷掘进面煤与瓦斯突出的研究提供理论指导。  相似文献   

12.
深部矿井冲击地压、瓦斯突出复合灾害发生机理   总被引:3,自引:0,他引:3       下载免费PDF全文
朱丽媛  潘一山  李忠华  徐连满 《煤炭学报》2018,43(11):3042-3050
为了探索深部矿井冲击地压、瓦斯突出复合灾害机理,为复合灾害的有效监测与防治提供理论基础,通过试验研究和理论研究相结合的研究方法,研究了瓦斯对煤岩体力学性质和冲击倾向性的影响,建立了圆形巷道冲击地压、瓦斯突出复合灾害模型并进行了解析分析,探讨了冲击地压和煤与瓦斯突出的诱导转化机理。结果表明:随着瓦斯压力的增大,煤岩体强度降低,弹性模量减小,峰值应变减小,冲击倾向性降低;煤岩体应力存在一个临界值,当煤岩体应力超过临界煤岩体应力时,系统失稳发生冲击地压、瓦斯突出复合灾害;冲击地压、瓦斯突出复合灾害的临界煤岩体应力随瓦斯压力的增加而减小,随煤岩体强度的增大而增大,随冲击倾向性的增大呈现先减小后增大的趋势;冲击地压诱导瓦斯突出多发生在煤岩体中存在含气封闭断层等储气构造或煤层底板含有高弹性模量岩层(夹层)等情况,瓦斯突出诱导冲击地压多发生在软硬煤相间、相互包裹的煤层或突出过程中破碎煤岩体的抛出形成较大的空顶面积等情况。  相似文献   

13.
对于大松动圈围岩巷道,锚杆和围岩共同作用在松动圈内部形成了“锚固承载层”。为研究大松动圈下“锚固承载层”对巷道围岩应力分布的影响,通过理论推导和实例分析,认为“锚固承载层”在极限平衡状态下对塑性区提供的支护强度[pid]由锚杆支护强度[pi]和锚固承载结构强度两部分组成,根据支护强度[pi]和锚固层厚度b的关系提出了“锚固界限厚度”概念。对于松动圈外的围岩,将巷道周边的应力分布进行了重新计算并与传统的Finner-Kastner解进行了比较。研究表明:承载结构在巷道稳定性控制中占据主导作用,支护强度和承载结构协调作用更有利于巷道维护,修正Finner-Kastner解可为深部巷道围岩支护机理研究以及巷道支护参数设计提供理论依据。  相似文献   

14.
陈跃朋 《中州煤炭》2018,(3):164-169
确定巷间煤柱合理尺寸是保证留底煤掘进双巷布置大采高工作面安全、高产与高效的关键所在。以某矿122106大采高工作面沿底掘进胶运巷和辅运巷之间的护巷煤柱为工程背景,对工作面生产地质条件展开现场调研,同时原位测试巷道围岩地质力学参数。基于上述原始数据理论,估算出煤柱极限强度与合理的煤柱宽度范围,通过数值试验研究手段,分析初步选定宽度煤柱条件下,二次回采阶段巷道围岩及煤柱内部应力、位移和塑性破坏特征。结果表明:煤柱的极限强度为50.48 MPa,合理的煤柱宽度为19.24~29.28 m。煤柱宽度20 m时,煤柱内塑性区是2个独立的区域;当煤柱宽度达到一定程度后,接续面回采对上个工作面侧煤柱应力影响较小,主要是对本侧煤柱影响较大;靠近煤柱侧顶板和帮部变形较大,垂直位移最大值集中在巷道肩角位置,顶板出现不均匀下沉;煤柱核区内垂直应力均小于其极限强度,能保证稳定;煤柱最大垂直应力集中在两侧,靠近采空区的位置,煤柱中部存在较明显的应力下降区域。  相似文献   

15.
煤巷煤体破裂区厚度的一种计算方法   总被引:6,自引:0,他引:6  
通过对煤巷两帮煤体受力特点的分析研究,从理论上导出煤体破裂区厚度的计算公式,分析了相关因素对煤体破裂区厚度的影响,与实测破裂区厚度比较,相对误差为10%左右,结果表明,减小巷道高度,增大煤体与岩层接触面的摩擦角是减小煤体破裂区厚度的有效途径。  相似文献   

16.
针对强动力条件下煤柱的稳定性和合理留设问题,以高家堡煤矿204工作面为研究背景,采用理论分析和数值模拟相结合的方法,对比分析了4~30 m煤柱的应力分布和变形破坏特征,确定了留设煤柱宽度为6 m。通过分析变形特征和支承压力分布特征,将煤柱稳定状态分为破裂区、卸载区、弹性区3个区;分析认为,宽度合理留设应考虑使巷道处于应力降低区、煤柱自身稳定性、有利于提高煤炭采出率、满足隔离采空区需要的4大原则。现场实践表明,巷道掘进采用该煤柱宽度之后,巷道浅部围岩变形量小且易于控制,取得了良好的施工效果,既提高了煤炭回采率又便于防冲安全管理。  相似文献   

17.
为了提高沿空掘巷的稳定性,采用FLAC3D分别模拟2203与2205工作面3m、5m、6m、8m煤柱宽度时的沿空巷道垂直应力和塑性区分布规律。当煤柱宽度为5m时,煤柱为垂直应力主要承载,且中间部位将出现小范围的弹性区,此时的煤柱变形最为稳定。采用“十字布点”监测沿空巷道围岩变形量可知,5m煤柱能保证巷道稳定性。  相似文献   

18.
合理尺寸的煤柱既可以保证巷道的稳定性,也可以提高煤炭的回收率.本文以铜川玉华煤矿为背景,通过应力动态监测、理论推导与工程验证相结合的方法确定区段煤柱合理留设宽度.通过对2410工作面进行应力监测,发现相较于采空区侧煤柱,实体煤的承载能力较高,应力增量较大,在采动影响下应力峰值向深部转移时间晚.为进一步确定煤柱具体留设宽...  相似文献   

19.
程宏波  田野 《中国矿业》2022,31(10):110-117
在工作面开采的情况下,末采煤柱宽度的合理留设是保持巷道稳定的关键因素,合理的煤柱留设不仅可以有效提高煤炭资源的回收率,还可以维护大巷的稳定性。本文以串草圪旦煤矿6102工作面为研究对象,运用数值模拟和理论分析相结合的方式,对末采煤柱的留设尺寸进行研究,通过对煤柱进行极限平衡计算,确定合理的煤柱尺寸上下限在15.00~32.54 m之间,并结合数值模拟对末采煤柱宽度为30.0 m、25.0 m、22.5 m、20.0 m和15.0 m等5种方案的巷道围岩应力及塑性区分布状态进行研究,确定了末采煤柱宽度为23 m。此时工作面的超前支承应力对联络巷的影响较小,且煤柱内存在10 m左右的弹性核区,可保证煤柱的稳定性和阻止采空区内的瓦斯涌入联络巷内。研究成果成功应用于工程实践,为类似条件下煤柱留设提供了有益借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号