首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为了研究水分及其矿化度对煤样甲烷解吸的影响,以平顶山矿区己16-17煤样为例,开展了干燥和不同矿化度(0、2、5、15 g/L)饱和水条件下煤样的等温解吸试验,探讨了不同矿化度水对煤的甲烷解吸性能的影响。结果表明:不同矿化度水的存在,大幅减小了煤的甲烷解吸初速度、解吸总时间和甲烷解吸总量;不同程度地增加了各时间段甲烷解吸量占解吸总量的比例,但该比例的增幅随平衡压力的增大而呈现不同程度的下降;但对煤的甲烷解吸拟合规律影响不大。对于不同矿化度饱和水煤样,不同平衡压力下,各煤样前期解吸速度衰减都较快;相同平衡压力下,随矿化度的增大,各煤样甲烷解吸的初期速度、解吸总时间和解吸总量均呈现先增大后减小的规律,解吸总量最大时矿化度约为2.5 g/L;此后,解吸总量逐步减小,减小幅度逐步降低,当矿化度为15 g/L时,煤样的甲烷解吸总量甚至低于0 g/L饱和水煤样;甲烷解吸总量不会一直下降,当矿化度大于20 g/L时,其对甲烷解吸总量的变化无明显作用。研究认为水分子除了竞争占据甲烷分子的吸附点位外,还多层吸附于煤表面占据甲烷吸附通道,进一步减少了煤对甲烷的吸附量;当水分增至饱和时,多余水分会以游离态赋...  相似文献   

2.
《煤炭技术》2021,40(9):131-134
煤的甲烷吸附能力是含气量估算和煤层气开发潜力分析的重要参数之一。根据深部13-1煤等温吸附实验结果,分析了煤的甲烷吸附性能。同时,基于Langmuir方程,探讨了煤层含气量特征。结果表明:13-1煤的吸附体积12.98~23.44 m~3/t,平均16.34 m~3/t;兰氏压力1.60~4.83 MPa,平均3.22 MPa。含气饱和度均处于近饱和状态,对于煤层气的开采有利。因此,以上结果可为深部煤层气的研究和勘探提供了理论依据。  相似文献   

3.
甲烷在煤表面的吸附势与煤阶的关系   总被引:1,自引:0,他引:1  
本文根据在平衡水分、30℃条件下实测和收集的煤的等温吸附资料,采用吸附势理论,计算了各个煤样吸附等体积(5cm^3/g)甲烷时的吸附势,发现随煤阶的增加吸附势呈规律性变化。这种变化规律与兰氏体积随煤阶的变化规律一致,且完全与四次煤化作用跃变对应。可见煤层甲烷的吸附与煤的分子结构、晶体结构和孔隙度密切相关。  相似文献   

4.
煤的等温吸附测试中数据处理问题研究   总被引:5,自引:0,他引:5  
张庆玲  曹利戈 《煤炭学报》2003,28(2):131-135
通过大量等温吸附实验数据分析,结合多口煤层气勘探试验井的实测气合量、储层压力等资料,分别进行了吸附相体积校正前后纯甲烷气体等温吸附曲线比较,认为不校正吸附相体积的等温吸附实验数据更符合实际情况.吸附相虽然客现存在,但被吸附状态存在的甲烷体积和以自由气体状态存在的甲烷体积相比,吸附相体积要小得多,校正后兰氏体积和兰氏压力比未校正值增加了30%-40%,严重偏离了真实情况.指出了使用校正公式存在的问题,提出了等温吸附实验数据处理方法.  相似文献   

5.
鄂尔多斯盆地煤储层低温氮吸附孔隙分形特征研究   总被引:3,自引:0,他引:3  
在利用低温氮吸附法测试鄂尔多斯盆地煤储层孔隙分布的基础上 ,计算了煤样的孔容及比表面分维数 ,并分析了煤储层对甲烷的吸附能力与孔隙分维之间的关系。研究表明随着比表面分维数的增加 ,煤储层兰氏体积减小 ,而兰氏压力增加 ,随着孔容分维数的增加兰氏体积减小。  相似文献   

6.
为了探究水分含量和负压对煤层气等温吸附、解吸特征的影响,采用大样量煤层气吸附/解吸仿真试验设备对鄂尔多斯盆地东缘北部煤矿煤样进行煤层气常规等温吸附解吸过程和负压解吸过程的实验室模拟,通过将煤样进行处理得到干燥煤样、平衡水煤样、饱和水煤样3种不同含水饱和度煤样,分别对其进行等温吸附测试、常规等温解吸测试和负压解吸测试,得到了煤样在不同含水饱和度、不同负压条件下的压力与吸附量实测数据,并采用不同的吸附/解吸方程式进行拟合。通过对比分析,研究了水分对等温吸附过程、解吸过程以及负压对解吸过程的影响,并从分子间作用力的角度解释了水分对等温吸附解吸过程的影响。结果表明:煤样解吸过程与吸附过程不可逆,存在解吸滞后;由于水分子与煤分子间的作用力大于甲烷分子与煤分子间的作用力,水分在与甲烷的竞争吸附中具有优势,煤样含水率越高,其吸附甲烷的能力越低;煤样含水率较低时,含水对煤岩降压解吸影响不明显;当煤样含水率高于某一值时,外来水分抑制煤层气降压解吸,分析认为这可能与煤样的物质组成和煤分子结构有关;由于水分对甲烷的置换解吸作用,若水力压裂过程中压裂液滤失严重,将降低煤层吸附气量,延长排水降压阶段,减少累计产气量,因此应严格控制压裂液滤失;负压解吸阶段,单位压降引起的解吸量更大,说明负压排采增产措施具有潜力。  相似文献   

7.
以大佛寺4#不粘煤样为研究对象,进行4#不粘煤空气干燥基样和平衡水分样等温吸附实验,计算吸附势和吸附空间,得出吸附特征曲线,以期预测大佛寺4#不粘煤层中煤层气资源/储量,验证吸附理论的可靠性。实验结果显示:对于同1种煤样,吸附势与环境温度无关系,煤中水分大小对吸附势影响较大;实验进一步证明煤-甲烷分子之间作用力主要为色散力,吸附过程为物理吸附;根据吸附特征曲线计算所得极限吸附量与常规Langmuir方程拟合所得结果十分相近,初步证明吸附特征曲线所得极限吸附量预测煤吸附甲烷最大能力、预测煤层气资源/储量是可行的方法。  相似文献   

8.
为研究低阶煤中含水率对不同宏观煤岩类型甲烷吸附/解吸的影响,采集大佛寺井田延安组4号煤样品并分离光亮煤与暗淡煤样品,分别采用液氮吸附、扫描电镜、接触角测定以及等温吸附/解吸等试验手段,分析煤样的物质组成、孔隙结构特征、润湿性特征、吸附/解吸等特征;并基于等量吸附热、表面自由能等热力学参数计算结果,从能量角度分析低阶煤中不同宏观煤岩类型的润湿性对甲烷吸附/解吸特征的影响。结果表明:①光亮煤的灰分、水分及氢、氧、氮元素含量低于暗淡煤,而挥发分及碳、硫元素含量高于暗淡煤;光亮煤的表面结构相对简单,接触角为56.3°,暗淡煤的接触角为51.7°,光亮煤的润湿性较暗淡煤差;②升压阶段,空气干燥基煤样的等量吸附热值大于平衡水煤样,且光亮煤的等量吸附热大于暗淡煤;降压阶段,平衡水煤样的等量吸附热小于空气干燥基煤样,暗淡煤的等量吸附热大于光亮煤。此外,无论光亮煤还是暗淡煤,降压阶段的等量吸附热均大于升压阶段的等量吸附热,表明甲烷解吸还需要从外界环境中吸收更多的能量,且降压不能促使甲烷完全解吸,甲烷解吸存在滞后性,本质是吸附和解吸过程能量的差异;③水分子易与煤基质表面断裂的化学键及煤基质内部的亲水性官能团结合,在一定程度上降低了煤的表面自由能,使甲烷-煤吸附系统达到平衡状态所释放的热量更少,并且,水与煤的分子作用力强于甲烷,可以占据煤表面的有效吸附位,使煤吸附甲烷能力变弱。研究结果可为区内后续煤层气高效开发工作提供理论依据。  相似文献   

9.
刘炎杰  范延昌  苏恒 《煤》2015,(5):8-11
为了研究压力和煤阶对煤中甲烷扩散特性的影响,进行了甲烷等温吸附解吸实验。选取新疆某矿区长焰煤、山西古城矿3号煤层贫瘦煤两种不同变质程度的煤,制成60~80目的干燥煤样。在30℃恒温条件下,不同煤阶的煤样分别在不同的平衡压力条件下进行吸附解吸实验,对比分析研究甲烷在压力、煤阶两个主控因素下煤中甲烷扩散量,扩散率的差异。通过分析实验结果发现:高压力下甲烷累积扩散量大于低压力下的扩散量,而扩散率与之相反;高阶煤中甲烷扩散量大于低阶煤的扩散量,扩散率与之相反。研究不同主控因素下的瓦斯扩散规律,对煤层气开发和防治矿井瓦斯灾害有很好的指导意义。  相似文献   

10.
煤在温度和压力综合影响下的吸附性能及气含量预测   总被引:19,自引:2,他引:19  
通过对有代表性煤样的副样进行不同温度等吸附试验,在进行等温吸附实验前对煤样进行平衡水分处理,使煤样的水分含量接近原地煤的水分含量,研究发现,在等压条件下,煤吸附甲烷量随着温度的增加呈线性减少,相同温度,不同压力,不同煤样吸附量的减少量不相同,在温度和压力综合作用下,在较低温度和压力区,压力对煤吸附能力的影响大于温度的影响,随着温度和压力的增加煤吸附甲烷量增大;在较高温度和压力区,温度对煤吸附能力的影响大于压力的影响,煤吸附甲烷量减少;煤变质不同,吸附量增大到吸附量减少的转折点不相同,建立了接近原地煤层气储集条件(包括温度、压力、水分,灰分,煤变质)综合影响下煤层气含量预测方法,该方法已被全国煤层气资源量计算应用。  相似文献   

11.
煤层注水对防突具有显著效果,而煤层孔隙特性是影响瓦斯吸脱附及渗流的重要因素,为了从孔隙角度揭示不同注水压力对原煤体甲烷吸脱附性能的影响。选取首山矿己15-12070工作面进行煤层注水现场实验,使用氮吸附法得出各煤样孔隙特性并用分形理论计算孔隙粗糙度,使用静态容量法测出各煤样吸脱附参数。结果表明:注水后各孔径段孔隙量均有所增加,注水压力与比表面积、孔容及分形维数呈线性正相关关系;孔隙特征参数与甲烷吸脱附性能呈线性正相关关系;各煤样均出现甲烷吸脱附迟滞现象,且注水压力越高,甲烷吸附能力越强,脱附迟滞程度越大。煤层注水压力越大,煤的孔裂隙数量会增多且粗糙度增大,煤体倾向于保留更多的瓦斯。  相似文献   

12.
王凯  刘明举  郝富昌 《煤炭技术》2012,31(11):88-90
对龙山矿系统采样并进行实验分析,研究龙山矿二1煤层的吸附特征及影响因素。实验表明:龙山二1煤层瓦斯吸附常数a分布在40.900~49.620 m3/t之间,煤层具有较强的吸附能力,且在低压力区吸附量随压力增大而急剧增加。对比分析表明,煤的变质程度是影响龙山二1煤层瓦斯吸附特性的主控因素,水分、灰分对煤层吸附能力具有一定的削弱作用。  相似文献   

13.
为了揭示深部煤储层煤吸附特性,量化表征煤储层吸附气量,以鄂尔多斯盆地东缘石炭—二叠系煤为研究对象,通过高温高压条件下煤的等温吸附实验研究,从煤级、温度及压力的角度解读高温高压条件下煤吸附特征。基于吸附势理论,建立了不同煤级煤的吸附特征曲线及吸附气量预测模型。应用预测模型对临兴地区石炭系8+9号煤层吸附气量进行了计算,结果表明:深部煤储层吸附气量受煤级、压力、温度的综合控制,煤级在0.77%~2.18%,即气煤—贫煤阶段,煤级和压力对煤吸附能力显示正效应、温度起负效应,且随着压力增大温度的负效应更为显著。不同煤级对应的煤吸附甲烷特征曲线不同,煤级越高则吸附势随吸附空间增大而减小的速度越缓慢。计算的绝对吸附量为19.6~31.1 cm~3/g,含气饱和度为37.8%~78.8%。  相似文献   

14.
针对同一变质程度软/硬煤的比表面积和总孔容积相差数倍,但其对甲烷吸附量却相当这一现象,根据热力学原理及煤对甲烷吸附机理,建立了煤的孔径对甲烷吸附层厚度的方程,数值分析了吸附压力和孔径对吸附层厚度(吸附层数)的影响,同时采用软/硬煤的孔径分布拟合函数,数值计算了软/硬煤的瓦斯等温吸附曲线,并与实测结果进行了对比分析。研究结果表明:基于吸附层厚度理论,在同一吸附平衡压力下,甲烷吸附层厚度随着孔径增大呈负指数变化,即煤体对甲烷的吸附是不同分子层的集合。采用煤体中孔径与其孔体积的分段函数和煤对甲烷的吸附层厚度理论,计算得到的瓦斯吸附等温线无论是变化趋势还是定量上均与实测结果一致,误差小于6.5%。因而,吸附层厚度理论很好地揭示了软/硬煤对甲烷吸附特征。由此,只要测得煤的孔径分布特征,即可采用吸附层厚度理论对其吸附量进行计算,为预测煤层瓦斯含量提供新方法。  相似文献   

15.
三轴应力下软煤和硬煤对不同气体的吸附变形特性   总被引:1,自引:0,他引:1       下载免费PDF全文
为了深入研究煤体与瓦斯相互作用的变形特性,利用自主研发的三轴应力下煤样吸附变形动态测试系统,开展三轴应力状态下CO2和CH4气体在软煤和硬煤中吸附量以及吸附变形的动态测试试验,建立了三轴应力下煤样吸附气体变形模型。试验结果表明:① 软煤和硬煤在三轴应力条件下对CO2和CH4气体的吸附曲线符合Langmuir方程。三轴应力状态下软煤的吸附能力远大于硬煤的吸附能力,且两种煤样对CH4的吸附量都小于CO2。② 在应力恒定状态下,软煤吸附气体后的变形大于硬煤吸附气体后的变形。③ 软煤与硬煤在三轴应力下的吸附变形动态演化过程可以划分为初始快速变形阶段、缓慢变形发展阶段和变形稳定阶段3个阶段。④ 三轴应力下煤样的变形量随着吸附量的增加而增大。  相似文献   

16.
煤吸附瓦斯细观特性研究   总被引:7,自引:0,他引:7       下载免费PDF全文
周动  冯增朝  赵东  王潞  王雪龙 《煤炭学报》2015,40(1):98-102
为研究甲烷吸附孔隙压力对煤膨胀变形的影响,实验应用μCT225kVFCB型高精度显微CT实验系统,对直径为5 mm的细观煤样进行了不同孔隙压力下的吸附瓦斯扫描实验,并通过对其孔隙率与膨胀变形量的观测与分析得到了煤吸附瓦斯细观特性。研究发现:在细观实验中煤样吸附瓦斯会导致煤体孔隙率下降,并发生体积膨胀变形;体积膨胀变形规律符合朗格缪尔方程,且煤样不同位置的孔隙率与体积变化均具有非均匀性。研究结果表明:在吸附瓦斯过程中,煤体骨架体积膨胀会导致煤体孔隙体积减小与外观体积膨胀,且煤体骨架膨胀变形时更倾向于通过挤压煤体原始孔隙来获得膨胀空间。  相似文献   

17.
不同煤体结构煤的吸附性能及其孔隙结构特征   总被引:10,自引:0,他引:10       下载免费PDF全文
煤的吸附能力是决定煤层含气量的重要参数。采用沁水盆地东南部赵庄井田二叠系山西组3号煤4个不同煤体结构的高煤阶煤样,通过等温吸附试验分析了不同煤体结构煤样在不同温度和压力下的吸附性能;同时对不同煤体结构煤样进行了低温液氮吸附实验,分析了不同煤体结构煤的孔隙结构特征,从煤体孔隙结构层面分析了不同煤体结构煤的吸附控制机理。结果表明:煤样升压吸附符合Langmuir等温吸附方程,饱和吸附量随煤体破坏程度的增加而增高,随着温度的增高而降低。随着煤体破坏程度的增高,孔容和比表面积也相应增大,孔容主要由中孔贡献,比表面积主要由微孔贡献,糜棱煤的孔容和比表面积在不同孔径阶段均最大,其次为碎粒煤、碎裂煤和原生结构煤;低温液氮吸附实验结果与等温吸附试验反映一致规律,这些说明,在同一地质条件下,煤体结构破坏越严重的地区煤层含气量越高。  相似文献   

18.

为了探究煤岩体系微观组分及孔隙结构对甲烷吸附的影响规律, 选取沙曲一矿6组煤岩样, 通过工业分析、X射线衍射、扫描电镜与能谱分析、低温氮吸附、计算机断层扫描, 以及煤岩甲烷吸附实验,分别研究煤岩样微观组分、孔隙结构特征对甲烷吸附的影响。研究结果表明: 煤样和岩样无机组分质量分数分别为15.82%~20.93%、90.80%~94.68%, 均以石英和黏土矿物为主;岩样BET比表面积为3.32~8.70 m2/g、吸附孔体积为0.009 5~0.019 1 cm3/g, 均大于煤样的BET比表面积和吸附孔体积;岩样孔隙表面粗糙度、孔结构复杂度略大于煤样的孔隙表面粗糙度、孔结构复杂度, 与黏土矿物含量高有关。煤岩样甲烷等温吸附曲线均符合朗格缪尔模型, 可用极限吸附量VL和朗格缪尔压力pL描述吸附规律;相同吸附温度下, 岩样存在一定的吸附性, 煤样吸附性远大于岩样。分析得出, 煤岩样的有机组分含量、黏土矿物含量、表面分形维数、比表面积和吸附孔体积对甲烷吸附过程VLpL影响显著。基于多元线性回归分析了5种因素对甲烷吸附规律的影响关系: 有机组分含量高、比表面积大的样品CH4分子极限吸附量VL越大, 而黏土矿物含量高不利于吸附甲烷;吸附孔体积越小、黏土矿物含量越高、比表面积越大, 朗格缪尔压力pL越大。

  相似文献   

19.
为研究不同软硬煤瓦斯吸附特性,以山西古交矿区东曲矿为研究对象,针对2组不同变质程度的软硬煤,通过高压容量法测试了其瓦斯吸附性能;同时对不同软硬煤开展了低温液氮吸附实验,分析了其孔隙结构特征,从煤体微结构层面揭示了不同软硬煤的瓦斯吸附控制机理。研究结果表明:不同软硬煤之间存在较大的吸附差异性,瓦斯吸附参数VL最大值是最小值的1.5倍;在不同软硬煤中,微孔所占比例均大于50%,煤中的孔比表面积主要由小于10 nm的微孔所贡献;构造变形作用使得煤层中的原生孔隙裂隙系统被破坏,孔隙直径减小,微孔比例增加,孔隙比表面积也在不断增大,因而,软煤较硬煤拥有更强的吸附性能。  相似文献   

20.
煤对CH4/CO2二元气体等温吸附特性及其预测   总被引:5,自引:2,他引:5       下载免费PDF全文
研究了晋城煤和潞安煤对CO2和CH4及其二元混合气体的等温吸附特性,利用扩展Langmuir和理想吸附溶液理论结合纯气体等温吸附模型Langmuir,DA,DR,BET对吸附实验数据进行预测,并检验了实验数据的预测准确度.研究结果表明,煤对混合气体的吸附量介于CH4和CO2吸附量之间;煤对混合气体中CH4的吸附量并不是随压力的增加而增加;理想吸附溶液理论结合纯气体吸附等温线对CO2/CH4二元混合气体实验数据预测的准确度要高于扩展Langmuir,理想吸附溶液理论对混合气体吸附预测的准确度取决于所用的纯气体的等温吸附方程和所预测的煤样煤质指标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号