首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
传统无人机故障诊断系统故障传感器与故障算法间的逻辑变量存在差值,当故障点存在于传感器结构内部时,无法及时感知并反馈故障数据,导致系统软件部分分析算法分析异常,故障信号诊断准确性差,为此提出基于遥测数据分析的无人机故障诊断系统设计;引入遥测数据分析技术,建立基于遥测数据分析的故障信号诊断硬件,创建故障数据采集单元、故障数据调理单元、故障数据通信单元,并在三大硬件单元中分别采用M1401 8路模量数据采集卡、CY7C68013A-56PVXI多模数据分析处理器、EP3C16Q240C8N通信IC,配合外围器件,构建起基于遥测数据分析的无人机故障信号诊断平台;配合硬件性能,软件部分分别对故障信号诊断策略与算法进行了优化设计;通过实验数据表明:所设计系统对无人机软件故障信号的检测准确率为97.3%,硬件信号故障的检测准确率为98.6%,能够实现对故障信号的精准诊断,有效解决传统诊断系统存在的问题。  相似文献   

2.
无人机自主飞行需要高可靠性的飞行控制系统,针对系统进行故障模式分类可提高系统的可靠性.传统的故障诊断方法难以解决无人机的高维、非线性和不确定输出等问题,不利实时诊断.为了实时进行故障诊断,保证系统安全性能,提出一种改进的神经网络故障模式分类算法以克服上述问题,首先采用改进的共轭梯度优化算法进行BP神经网络学习,以改进网络收敛性能,改进算法分别对无人机飞行控制系统执行器、传感器和系统故障进行故障模式分类.用某无人机纵向自动驾驶仪系统进行仿真验证,结果表明算法结构简单,可以进行实时故障识别,保证系统的可靠性.  相似文献   

3.
无人机控制系统传感器故障诊断的方案与仿真   总被引:1,自引:1,他引:0  
应用卡尔曼滤波器对传感器进行故障诊断时,由于输入噪声和测量噪声的统计特性是不确定的,因此难以得到其准确的统计特性先验信息,而采用错误的噪声统计特性会产生滤波误差,甚至使滤波发散,因此该文提出了一种基于Sage-Husa时变噪声统计估计器的自适应卡尔曼滤波器算法,在滤波过程中利用噪声统计估计器对未知的统计特性进行在线估计,并对无人机控制系统的传感器故障进行在线诊断,此方法无须增加硬件余度和其他解析余度,易于实现,可靠性好,检测迅速.仿真表明该方法能够检测出系统故障并进行故障定位.  相似文献   

4.
无人机是集航空、电子、计算机控制、信息和传感等技术于一体的复杂系统,在军事和民用领域具有广泛的应用。无人机常见的故障以及诊断方法是研究的热点内容,结合国内外研究现状,介绍了无人机传感器故障分类及6种传感器故障诊断方法,以及执行机构故障、推进系统故障和通信故障等内容,旨在为无人机的故障诊断提供参考。  相似文献   

5.
应用标准的多模自适应滤波算法能够在较短的时间内检测出系统的单一故障,但是当把它用于检测系统的双重或多重故障时,这一算法需要建立所有可能出现的故障模型,而每一个模型都要对应一个卡尔曼滤波器,需要大量的滤波器并行运算,大大增加了系统的故障诊断时间,为了简化算法并减少算法计算时间,本文提出了一种用于复杂系统的多重故障诊断的分层多重模型滤波技术,在确定某一单个故障发生后,则可以启用一组基于上一单个故障的新滤波器来检测系统的第二重故障,这样减少了并行运算的滤波器数量,从而减少计算量和故障诊断时间.本文将此算法应用于某无人机多重传感器的故障诊断,仿真结果验证了该方法的有效性.  相似文献   

6.
提出一种利用BP神经网络预测无人机系统故障的方法。对利用无人机系统故障数据集预测无人机故障的相关问题进行分析;给出BP神经网络的建模思路和计算方法;探讨使用特征变量显著性筛选技术识别故障影响因素。实际计算表明该方法能有效应用于无人机故障预测,具可行性。  相似文献   

7.
无人机系统工作处于外回路,从故障发生到判定需要一定的时间做出反馈与控制,若未及时处理,将影响无人机系统运行的稳定性。无人机作为一个大的迟滞延迟复杂系统,只能通过遥测遥控数据掌握飞行器状态。而无人飞行器故障预测与健康管理技术(PHM),是利用先进的传感器的集成,实时下传无人机遥测数据,并借助各种算法和智能模型来预测、监控和管理无人机的状态。本文以遥测数据作为基础,结合无人机的实际工程应用需求,分析无人机发动机典型故障模式,建立无人机发动机典型故障的粒子滤波、K-Means聚类、多层感知器等三种诊断模型。并在最后利用试验数据对诊断结果进行了比较和分析,对三种方法的适用性展开了阐述和说明。实验结果表明,提出的诊断方法能够有效地用于无人机发动机故障诊断中,在工程应用方面具有较高的实用价值。  相似文献   

8.
基于等价空间的故障检测可实现残差对初始状态与输入全解耦,在实际工程系统中取得了广泛应用.然而,为了确保故障诊断系统性能,高阶的等价空间导致残差在线计算量大,且制约了可检测故障信号的频率范围.本文提出一种基于小波变换与等价空间结合的无人机作动器故障检测方法,将故障检测问题归结为小波基函数选取和等价空间向量的优化设计,使产生的残差信号满足了干扰鲁棒性与故障灵敏性比率型性能指标的最小化,并通过引入平稳小波变换对残差进行多尺度滤波,利用小波变换的时频局部化特性和快速算法,在满足故障检测系统性能的前提下有效降低了等价空间阶数,一定程度上实现了较宽频率范围内作动器故障信号的检测,克服了传统等价空间方法的不足.最后,以无人机作动器故障检测为例,通过仿真实验验证了本文方法的有效性.  相似文献   

9.
暖通空调系统的自动化和准确故障检测与诊断是智能工业设施维护领域减少时间、能源和财务成本的最重要技术之一。近年来,基于数据驱动的故障检测与诊断方法在暖通空调方面表现出色,但是大多数方法都只能检测单一故障等级的故障,并且不能进行跨系统故障诊断。为了解决这两个问题,提出一种基于联邦学习的故障检测与诊断方法,该方法使用卷积神经网络来提取信息特征,利用特定算法进行聚合,经过多次联邦学习,能够进行跨故障等级和跨系统故障检测与诊断。在多故障等级故障检测与诊断方面,利用冷水机组4个故障等级数据进行联邦学习。实验结果显示,4个故障等级的故障检测和诊断效果的F1-score平均值接近0.97,已经达到实际应用水平。在跨系统故障检测与诊断方面,利用冷水机组和空气处理机组数据进行联邦学习。实验结果表明,利用不同系统数据进行联邦学习,可以提高某些轻微故障的诊断效果,比如,相比传统机器学习方法,RefOver故障的诊断效果F1-score提升了14.4%,Refleak和Exoil两个故障的诊断F1-score提升了2%~4%。  相似文献   

10.
无人机驱动故障检测一直是无人机研发领域面临一大难题之一,因为以往检测系统,如以视觉感知和超声波技术为基础的故障检测系统,无法在交叉耦合作用下将故障信号与正常信号区分开来,从而影响了系统检测性能。在此背景下,针对无人机驱动机运动耦合特性,提出一种基于运动解耦的无人机驱动故障自动检测系统。该系统设计主要由硬件和软件两部分组成,硬件包括采集模块、调理模块、通讯模块、主控模块等四部分,软件主要针对主控模块中的检测程序进行分析,包括故障分离、故障振动特征提取和故障识别。结果表明:本系统总失效概率为0.72%,比以视觉感知和超声波技术为基础的故障检测系统总失效概率低0.19%和0.7%,说明本系统鲁棒性更好,系统检测性能提高。  相似文献   

11.
赵敏  戴凤智 《计算机科学》2020,47(3):237-241
无人机飞行受到气动阻尼扰动,从而导致控制稳定性不好。当前采用翼型截面气动参数调节的方法进行无人机抗扰控制,以扭角以及振动方向等参数为约束指标,参数调节的模糊度较大,对气动姿态参数调节的稳定性不好。文中提出基于气动参数调节的无人机抗扰动控制算法。该算法根据无人机的飞行工况构建各阶模态对应的气弹耦合方程,在速度坐标系、体坐标系、弹道坐标系三维坐标系下构建无人机的飞行动力学和运动学模型;采用卡尔曼滤波方法实现对无人机飞行参数的融合调节和小扰动抑制处理,并采用末端位置参考模型进行无人机飞行轨迹的空间规划设计;在卡尔曼滤波预估模型中实现对动力学模型的线性化处理,采用气弹模态参数识别方法进行无人机的飞行扰动调节;将姿态控制作为内环,获得位置环状态反馈调节参数;以无人机的升力系数和扭力系数作为气动惯性参数进行飞行姿态的稳定性调节,从而实现无人机抗扰动控制律的优化设计。采集飞机的俯仰角、横滚角和航向角作为原始数据在Matlab中进行仿真分析,仿真结果表明,采用所提方法进行无人机抗扰动控制的稳定性较好,对气动参数进行在线估计的准确性较高,航向角误差降低12.4%,抗扰动能力提升8dB,收敛时间比传统方法缩短0.14 s,无人机飞行的抗扰动性和飞行稳定性得到提高。所提方法在无人机飞行控制中具有很好的应用价值。  相似文献   

12.
为了提高四旋翼无人机对地面目标跟踪的稳定性和跟踪精度,提出了一种结合Tiny-YOLOV3和卡尔曼滤波的跟踪算法;首先分析了Tiny-YOLOV3的原理和网络结构,并基于Tiny-YOLOV3的目标检测结果,结合无人机状态和目标的几何关系建立了目标跟踪系统的数学模型;接着对目标相对运动关系进行分析,建立目标的运动学模型,考虑到目标检测结果受干扰影响较大,应用卡尔曼滤波器实现对目标轨迹的滤波和预测,进而提升目标跟踪的精度;最后根据经过卡尔曼滤波后的目标轨迹信息设计无人机控制律,在轨迹控制的同时引入对无人机偏航角的控制,从而实现无人机对目标的稳定跟踪;仿真结果表明无人机对目标的位置跟踪精度在0.5 m以内,速度跟踪误差在0.2 m/s以内,偏航角跟踪误差在3°以内,跟踪效果良好,从而论证了所提算法的有效性。  相似文献   

13.
无人机PCA故障检测与诊断技术研究   总被引:1,自引:0,他引:1  
无人机(UAV)飞控系统传感器故障检测和诊断常采用基于解析模型的方法,但飞行控制系统(FCS)的精确数学模型往往获取困难。针对此问题,提出了一种UAV-PCA算法。该算法在传统主成分分析(PCA)方法的基础上结合方差敏感自适应阈值的故障检测方法和基于特征方向的故障诊断方法,实现UAV飞控系统传感器的故障检测和诊断。算法不需要系统的数学模型,解决了应用传统PCA方法进行FCS故障检测与诊断时易出现暂态过程虚警和误诊断的问题。仿真结果证明该算法可以快速准确地检测传感器故障,而且可以有效地降低暂态过程虚警和提高诊断结果准确度。  相似文献   

14.
本文针对受到外界未知扰动和模型不确定性影响的倾转式三旋翼无人机,研究了其在尾部舵机发生堵塞故障时的容错控制问题.通过对倾转式三旋翼无人机姿态动力学特性的分析,将尾部舵机堵塞故障加入到力矩解算方程中.基于自适应反步法和非奇异终端滑模控制,提出了一种不需要故障诊断的鲁棒容错控制设计.利用基于Lyapunov的分析方法证明了闭环系统的稳定性,以及姿态误差的渐近收敛性质.通过在三旋翼无人机半实物仿真平台的实时实验以及与滑模控制器的对比,验证了该算法在无人机尾部舵机发生堵塞故障时,对姿态运动具有较好的控制效果.  相似文献   

15.
传统航天器故障检测系统姿态定位能力较差,导致不能突破阈值,准确实现检测,且传统系统不具备重构能力;为解决上述问题,基于自主诊断重构技术,提出了一种故障检测的新方法,优化设计了航天器故障检测系统的硬件和软件部分,硬件设计采用EEC-I型检测器,为保证检测器的运行,对检测器的电压与电流范围进行了设置;设计采用MATLAB的数据采集器,选用Telnet接入端口,实现采集器的通信,确保数据的顺利采集;采用FIR滤波器,为保证信号的完整性对通带和阻带进行设置;设计采用4NIC-UPS27型号一体化不间断电源为航天器故障检测系统提供动能;软件设计基于自主诊断重构技术的航天器故障检测系统流程,运用小波网络算法对航天器的姿态角数据进行分析,预测航天器的姿态角的安全阈值,最后利用残差数据分布概率模型进行航天器故障诊断;实验结果表明,设计的基于自主诊断重构技术的航天器故障检测系统能够很好地从X、Y、Z三个轴进行检测,确定不同方位的航天器故障,在设定阈值后,提出的检测系统能够很好地分析阈值,实现残差突破,同时具备路线重构能力。  相似文献   

16.
为了解决多旋翼无人机在飞行作业过程中受到环境磁干扰导致作业异常的问题,在使用DGPS进行差分定位的基础上,提出了一种基于航迹偏差的多旋翼无人机磁干扰检测技术;其基本原理是,当多旋翼无人机受到磁场干扰时,其飞行航迹会偏离预设航线,检测其航迹的偏离距离,通过与阈值比较,可以用来判断是否存在环境磁干扰;实验结果表明该方法可以有效检测环境磁场异常,在某些情况下比传统的磁航向角误差阈值检测方法可靠性更高,虚警率更小;综合使用航迹偏差检测方法和磁航向角误差检测方法,可有效(提高)环境磁场异常检测的准确度,降低虚警率。  相似文献   

17.
针对现有无人机导航控制方法存在的控制效果不佳的问题,本文提出一种基于粒子滤波的无人机自主轨迹视觉导航控制方法研究。利用粒子滤波算法,实现对无人机自主轨迹视觉导航控制方法的优化设计。采用栅格法构建无人机飞行环境地图,根据无人机的机械组成结构和工作原理,构建运动状态模型。利用内置的摄像机设备采集视觉图像,执行图像灰度转换、几何校正、滤波等预处理步骤。通过对视觉图像的特征提取,判断当前环境是否存在障碍物。利用粒子滤波算法确定无人机位姿,结合障碍物识别结果规划无人机的自主飞行轨迹。将位置、速度和姿态角的控制量计算结果,输入到安装的导航控制器中,完成无人机的自主轨迹视觉导航控制任务。通过实测分析得出结论:应用设计的导航控制方法,其位置误差、速度误差以及姿态角误差均维持在预设值以下,即设计的导航控制方法具有良好的控制效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号