首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Described herein are detailed hydrolytic studies of a series of aziridinyl quinones, which trap nucleophiles when protonated. This study provided a compilation of the rate constants for nucleophile trapping and of the pKa values for the protonated aziridinyl quinones. A linear free energy relationship, including the antitumor agent DZQ, as well as other synthetic quinone derivatives, was obtained as a result of this study. Protonated DZQ has the relatively high pKa value of 3.8, which explains the enhanced cross-linking of DNA by DZQ and other related aziridinyl quinones at pH 4. The literature often shows aziridinyl quinone protonation occurring at the aziridinyl nitrogen, but the dependence of pKa values on quinone substituents indicates the presence of delocalization, which must arise from O-protonation. Also investigated were the DNA alkylation reactions of protonated aziridinyl quinones. At the outset of this study, we postulated that these "hard" electrophiles would alkylate the phosphate backbone of DNA. Bulk DNA is up to 35% alkylated by protonated aziridinyl quinones as judged by the incorporation of the quinone chromophore into the DNA. The presence of phosphate alkylation was verified by a 1H-31P NMR correlation experiment with DZQ-alkylated hexamer. Our modeling studies present a new picture of DZQ alkylation of DNA, where there is competition between N(7) and phosphate alkylation. The conclusions of this part of our study are that the phosphate backbone should be considered as a possible target of any DNA-alkylating agent and that an assessment of phosphate alkylation is best made with a 1H-31P NMR correlation experiment. Finally, the benzimidazole-based aziridinyl quinone 2 was observed to undergo aziridine ring opening followed by hydrolytic removal of the aminoethyl group from the quinone ring. This reaction was used to tag the phosphate backbone of DNA with aminoethyl groups. Such tags render anionic phosphates cationic and could also be employed as points of attachment for chromophores, spin labels, or other moieties to DNA.  相似文献   

2.
In order to understand the mechanism involved in the aromatase inactivation by androst-5-ene-4,7,17-trione (4), a suicide substrate of aromatase, 5beta,6beta-epoxyandrosta-4,7,17,19-tetraone (6) was synthesized as a candidate for a reactive electrophile involved in irreversible binding to the active site of aromatase upon treatment of 19-oxo-5-ene steroid 5 with hydrogen peroxide in the presence of NaHCO3. The epoxide 6 was a competitive inhibitor of human placental aromatase (Ki = 34 microM); moreover, it inactivated the enzyme in an active-site-directed manner in the absence of NADPH (Ki = 36 microM, a rate constant for inactivation (k(inact)) = 0.027 min(-1)). NADPH stimulated the inactivation rate, but the substrate androst-4-ene-3,17-dione blocked the inactivation. A nucleophile, L-cysteine, did not cause a significant change in the inactivation. When both the epoxide 6 and its 19-methyl analog 7 were subjected separately to a reaction with N-acetyl-L-cysteine in the presence of NaHCO3, the 19-oxo compound 6 disappeared from the reaction mixture more rapidly (t1/2 = 6.0 min) than the 19-methyl analog 7 (t1/2 = 16 min). On the basis of these results, it is suggested that the 5beta,6beta-epoxy-19-oxo steroid 6 may be the reactive electrophile that alkylates a nucleophilic residue of the amino acid of the active site.  相似文献   

3.
A series of tetracyclic imidazoquinoxaline analogs was developed which constrain the carbonyl group of the partial agonist 3-(5-cyclopropyl-1,2,4-oxadiazol-3-yl)-5-[(dimethylamino)carbonyl] - 4,5-dihydroimidazo[1,5-alpha]quinoxaline (2, U-91571) away from the benzene ring. These analogs orient the carbonyl group in the opposite direction of the previously reported full agonist 1-(5- cyclopropyl-1,2,4-oxadiazol-3-yl)-12,12a-dihydroimidazo[1,5- alpha]pyrrolo [2,1-c]quinoxalin-10(11H)-one (3, U-89267). A number of approaches were utilized to form the "bottom" ring of this tetracyclic ring system including intramolecular cyclizations promoted by Lewis acids or base, as well as metal-carbenoid conditions. The size and substitution pattern of the additional ring was widely varied. Analogs within this series had high affinity for the benzodiazepine receptor on the alpha-aminobutyric acid A chloride ion channel complex. From TBPS shift and Cl- current assays, the in vitro efficacy of compounds within this class ranged from antagonists to partial agonists with only 18a identified as a full agonist. Additionally, several analogs were quite potent at antagonizing metrazole-induced seizures indicating possible anticonvulsant or anxiolytic activity. Unlike 3, analogs in this series did not have high affinity for the diazepam insensitive alpha 6 beta 2 delta 2 subtype. These results suggest that either constraining the carbonyl group away from the benzene ring or the greater planarity that results from the additional cyclic structure provides analogs with partial agonist properties and prevents effective interaction with the alpha 6 beta 2 delta 2 subtype.  相似文献   

4.
Aromatase is a cytochrome P450 enzyme complex that catalyzes the conversion of androst-4-ene-3,17-dione to estrone through three sequential oxygenations of the 19-methyl group. Androst-4-ene-3,6,17-trione (1) is a suicide substrate of aromatase. The inactivation mechanism for steroid 1 has been studied to show that the inactivation reaction proceeds through the 19-oxo intermediate 3. To further clarify the mechanism, 4 beta, 5 beta-epoxyandrosta-3,6,17,19-tetraone (6) was synthesized as a candidate for a reactive electrophile involved in irreversible binding to the active site of aromatase, upon treatment of compound 3 with hydrogen peroxide in the presence of NaHCO3. The epoxide 6 inhibited human placental aromatase in a competitive manner (Ki = 30 microM); moreover, it inactivated the enzyme in an active-site-directed manner in the absence of NADPH (K1 = 88 microM, kinact = 0.071 min-1). NADPH and BSA both stimulated the inactivation rate without a significant change of the K1 in either case (kinact: 0.133 or 0.091 min-1, in the presence of NADPH or BSA, respectively). The substrate androst-4-ene-3,17-dione protected the inactivation, but a nucleophile, L-cysteine, did not. When both the epoxide 6 and its 19-methyl analog 4 were subjected separately to reaction with N-acetyl-L-cysteine in the presence of NaHCO3, the 19-oxo steroid 6 disappeared from the reaction mixture more rapidly (T1/2 = 40 sec) than the 19-methyl analog 4 (T1/2 = 3.0 min). The results clearly indicate that the 4 beta, 5 beta-epoxy-19-oxo compound 6, which is possibly produced from 19-oxo-4-ene steroid 3 through the 19-hydroxy-19-hydroperoxide intermediate, is a reactive electrophile that irreversibly binds to the active site of aromatase.  相似文献   

5.
Clinical studies concerning the role of poly(ADP-ribose) polymerase (PARP) in the repair of drug- and radiation-induced DNA damage have been impeded by the poor solubility, lack of potency, and limited specificity of currently available inhibitors. A series of 2-alkyl- and 2-aryl-substituted 8-hydroxy-, 8-methoxy-, and 8-methylquinazolin-4(3H)-ones has been synthesized and evaluated for PARP inhibitory activity in permeabilized L1210 murine leukemia cells. 8-Methoxy- and 8-methylquinazolinones (14-34) were readily prepared by acylation of 3-substituted anthranilamides with the appropriate acid chloride, followed by base-catalyzed cyclization. The requisite 8-hydroxyquinazolinones (6, 35-39) were synthesized by demethylation of the corresponding 8-methoxyquinazolinones with BBr3. N-Methylation of 8-methoxy-2-methylquinazolinone (15) with MeI, followed by O-demethylation by BBr3, afforded the control N3-methylquinazolinones 42 and 43, respectively. In general, an 8-hydroxy or 8-methyl substituent enhanced inhibitory activity in comparison with an 8-methoxy group. 2-Phenylquinazolinones were marginally less potent than the corresponding 2-methylquinazolinones, but the introduction of an electron-withdrawing or electron-donating 4'-substituent on the 2-aryl ring invariably increased potency. This was particularly evident in the 8-methylquinazolinone series (IC50 values 0.13-0.27 microM), which are among the most potent PARP inhibitors reported to date. N3-Methylquinazolinones 42 and 43 were essentially devoid of activity (IC50 values > 100 microM). In studies with L1210 cells in vitro, a concentration of 200 microM 8-hydroxy-2-methylquinazolinone (6, NU1025) (IC50 value 0.40 microM) potentiated the cytotoxicity of the monomethylating agent 5-(3-methyltriazen-1-yl)imidazole-4-carboxamide and gamma-radiation 3.5- and 1.4-fold, respectively, at the 10% survival level.  相似文献   

6.
The oxygenation reaction of 2-methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase with the substrate, MHPC, was investigated. Two oxygenated flavin intermediates C(4a)-hydroperoxy flavin and C(4a)-hydroxy flavin were found, implying that the enzyme functions similarly to flavoprotein hydroxylases. This finding is supported by the results of independent oxygen-18 tracer experiments, which showed that one atom of oxygen from 18O2 and one atom of oxygen from H218O are incorporated in the product. MHPC oxygenase normally catalyzes both the oxygenation and the hydrolytic ring opening of the pyridine ring of MHPC to yield the acyclic compound, alpha-(N-acetylaminomethylene)succinic acid. Using 5-hydroxynicotinic acid (5HN), which has no 2-methyl group, we tested whether the hydrolytic reaction was due to the presence of the 2-methyl group on MHPC (that prevented rearomatization of the initial product) or to the specific properties of MHPC oxygenase. Product analysis of the enzymatic reaction of 5HN and MHPC oxygenase shows that the enzyme catalyzes the hydroxylation and subsequent hydrolysis of the hydroxylated substrate to yield an acyclic product. The investigation of the oxygenation reaction demonstrates that the enzyme uses the same mechanism to catalyze the 5HN reaction as it does in the MHPC reaction.  相似文献   

7.
Condensation of 5-thio-D-glucopyranose pentaacetate with 4-cyanobenzenethiol, in the presence of trimethylsilyl triflate, gave 4-cyanophenyl 2,3,4,6-tetra-O-acetyl-1,5-dithio-alpha-D-glucopyranoside 7 and 3,4,6-tri-O-acetyl-2,5-anhydro-5-thio-D-mannose bis(4-cyanophenyl) dithioacetal 9 in a 2:3 ratio. The latter is probably formed from the 4-cyanophenyl 2,3,4,6-tetra-O-acetyl-1,5-dithio-beta-D-glucopyranoside 6 via a transannular participation of the ring sulfur atom. When 2,3,4,6-tetra-O-acetyl-5-thio-alpha-D-glucopyranosyl bromide was used as donor and the reaction was carried out in the presence of potassium carbonate, 6, 7, 4-cyano-2-(2,3,4,6-tetra-O-acetyl-5-thio-alpha-D-glucopyranosyl)phenyl and 4-cyano-2-(2,3,4,6-tetra-O-acetyl-5-thio-beta-D-glucopyranosyl)phenyl 1,5-dithio-beta-D-glucopyranoside (14 and 16) were formed in a 23:4:2:1 ratio. The mechanism of formation of 14 and 16 is discussed. Condensation of 2,3,4,-tri-O-acetyl-6-deoxy-5-thio-alpha-D-glucopyranosyl bromide with 4-cyanobenzenethiol in the presence of potassium carbonate gave 4-cyanophenyl 2,3,4-tri-acetyl-6-deoxy-1,5-dithio-alpha- and beta-D-glucopyranoside (29 and 30) as well as 4-cyano-2-(2,3,4-tri-O-acetyl-6-deoxy-5-thio-alpha-D-glucopyranosyl)phen yl 2,3,4-tri-O-acetyl-6-deoxy-1,5-dithio-beta-D-glucopyranoside in a ratio of approximately 1:8:1. Compound 30 could be obtained in a higher overall yield using 2 as starting material and converting it via its 4-cyanophenyl 2,3,4-tri-O-acetyl-6-O-methanesulfonyl-1,5-dithio-beta-D-glucopyranoside derivative into the 4-cyanophenyl 2,3,4-tri-O-acetyl-6-deoxy-6-iodo-1,5-dithio-beta-D-glucopyranoside 33 which gave 30 on reduction with sodium borohydride-nickel(II) chloride. Treatment of 33 with silver acetate gave 4-cyanophenyl 2,3,4-tri-O-acetyl-6-deoxy-1,5-dithio-beta-D-xylo-hex-5-enopyranoside 35. The compounds obtained on deacetylation of 6, 9, 14, 30 and 35 showed a stronger oral antithrombotic effect in rats as compared to beciparcil, used as reference.  相似文献   

8.
The roles of the methoxy substituents on ring A of two ring colchicine (COL) analogues were probed by the synthesis of a number of drugs and the examination of their effect on binding to tubulin, inhibition of microtubule assembly, and induction of GTPase activity. Selective elimination of ring A methoxy groups at positions 2, 3, and 4 weakened all three processes. The effects on binding and inhibition were independent of the nature of ring C (or C'). Specifically, excision of the 2- or 3-methoxy groups weakened binding by ca. 0.4 kcal mol-1, while that of the 4-methoxy group of ring A was weakened by 1.36 +/- 0.15 kcal mol-1. The effect on the inhibition of microtubule assembly, expressed as the equilibrium constant for the binding of the tubulin-drug complex to the end of a microtubule, was more complex and strongly dependent on the nature of ring C (or C'). This was attributed to the abilities of various groups on ring C' to overcome the wobbling in the tubulin-drug complex introduced by the weakening of the anchoring provided by ring A. It is concluded that ring A of COL is not germane to the mechanism of the inhibition of tubulin self-assembly. It serves only as a complex-stabilizing anchor. The control of this process resides in the interactions that key oxygen atoms of ring C of COL or C' of structural analogues establish with the protein. It is proposed that the 4-methoxy group of ring A serves as a key attachment point for immobilization of the drugs on the protein.  相似文献   

9.
Structure-activity relationships were explored for some analogs of Brequinar having a linking atom between the 2-biphenyl substituent and the quinoline ring. Activities as inhibitors of dihydroorotate dehydrogenase and the mixed lymphocyte reaction were related to the overall shape and lipophilicity of the 2-substituent.  相似文献   

10.
Glutathione (GSH) conjugates of hydroquinone (HQ) and 2-bromohydroquinone (2-BrHQ) produce severe renal proximal tubular necrosis in rats. Since the reactivity of quinones lies, in part, in their ability to alkylate proteins, our goal was to develop an immunochemical method with which to investigate the role of protein adduct formation in quinone-thioether-mediated toxicity. An immunogen was synthesized by coupling 2-bromo-6-(N-acetylcystein-S-yl)hydroquinone (2-BrHQ-NAC) to keyhole-limpet hemocyanin (KLH). Anti-2-BrHQ-NAC-KLH antibodies were raised in rabbits and purified by affinity chromatography. Antibody binding to the 2-BrHQ-NAC epitope was confirmed by competitive enzyme-linked immunosorbent assay (ELISA) with a bovine serum albumin conjugate of 2-BrHQ-NAC. Affinity-purified anti-2-BrHQ-NAC-KLH antibodies recognized adducted proteins in the kidneys of rats treated with HQ, 2-BrHQ, 2-bromo-bis(glutathion-S-yl)hydroquinone, 2-(glutathion-S-yl)hydroquinone, 2, 5-bis(glutathion-S-yl)hydroquinone, and 2,3, 5-tris(glutathion-S-yl)hydroquinone. Immunoreactive proteins were found in all renal subcellular fractions of 2-BrHQ-treated rats, and the distribution of adducts was similiar to that obtained by quantifying 2-Br[14C]HQ covalent adducts. Western blot analysis revealed that three proteins, at 42, 46, and 79 kDa, were adducted by all the compounds examined. The identification of these adducted proteins will be required to assess their significance in quinol-thioether-mediated nephrotoxicity.  相似文献   

11.
The synthesis and cardiovascular characterization of a series of novel pyrrolo[2,1-d][1,5]-benzothiazepine derivatives (54-68) are described. Selective peripheral-type benzodiazepine receptor (PBR) ligands, such as PK 11195 and Ro 5-4864, have recently been found to possess low but significant inhibitory activity of L-type calcium channels, and this property is implicated in the cardiovascular effects observed with these compounds. In functional studies both PK 11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxa mide) and Ro 5-4864 (4'-chlorodiazepam) did not display selectivity between cardiac and vascular tissue. Therefore, several 7-(acyloxy)-6-arylpyrrolo[2,1-d][1,5]benzothiazepines, potent and selective peripheral-type benzodiazepine receptor ligands recently developed by us (3, 7-20), were subjected to calcium channel receptor binding assay. Some of these compounds showed an unexpected potency in displacing the binding of [3H]nitrendipine from L-type calcium channels, much higher than that reported for PK 11195 and Ro 5-4864 and equal to or higher than that of reference calcium antagonists such as verapamil and (+)-cis-diltiazem. Specifically, in rat cortex homogenate, our prototypic PBR ligand 7-acetoxy-6-(p-methoxyphenyl)pyrrolo[2,1-d][1,5]benzothiazepine (3) showed an IC50 equal to 0.13 nM for inhibition of [3H]nitrendipine binding. Furthermore, in functional studies this compound displayed a clear-cut selectivity for cardiac over vascular tissue. Comparison of calcium antagonist activity on guinea pig aorta strips with the negative inotropic activity, determined by using isolated guinea pig left atria, revealed that 3 displayed higher selectivity than the reference (+)-cis-diltiazem. Thus, the pyrrolobenzothiazepine 3 might represent a new tool for characterizing the relationship between the PBR and cardiac function. Furthermore, we have also investigated the structural dependence of binding to PBR and L-type calcium channels, and this study allowed us to identify a new class of potent calcium channel blockers selective for cardiac over vascular tissue, with no affinity for PBR. A number of structure-activity relationship trends have been identified, and a possible explanation is advanced in order to account for the observed differences in selectivity. Three structural features, namely, (i) the saturation of the C(6)-C(7) double bond, with a consequent higher molecular flexibility, (ii) the presence of a substituent in the benzofused ring, and (iii) a basic side chain at C-10 of the pyrrolobenzothiazepine ring system, were found to be responsible for potent L-type calcium channel antagonism and clear-cut selectivity for cardiac over vascular tissue. Among the synthesized compounds the pyrrolobenzothiazepine 62 was found to be the most promising selective calcium channel blocker. Additionally, the molecular structure determination of the key intermediate 48 by X-ray diffraction, molecular modeling, and NMR analysis is reported.  相似文献   

12.
Four additional neolignans, comprising obovatifol [(2S,3S)-2,3-dihydro-2- (3,4-dihydroxy-5-methoxyphenyl)-7-methoxy-3-methyl-5-trans-propenyl benzofuran], obovaten [2-(3,4-dihydroxy-5-methoxyphenyl)-7-methoxy-3- methyl-5-trans-propenyl benzofuran], perseal C [(2S,3R)-2,3-dihydro-2-(3,4-methylenedioxyphenyl)-5- formyl-3-hydroxymethyl-7-methoxy benzofuran] and perseal D [2-(3,4-dihydroxy-5-methoxyphenyl)-5-formyl-7- methoxy-3-methyl benzofuran] were isolated in a continuing study of the leaves of Persea obovatifolia. Obovatifol had been reported previously in a mass spectrometric analysis without any other spectroscopic data. Obovaten and perseals C and D are new compounds, bearing a C-1' formyl side-chain, instead of a propenyl group. Their structures were elucidated from spectroscopic data; they showed significant cytotoxic activities against P-388, KB16, A549 and HT-29 cancer cell lines in vitro.  相似文献   

13.
A series of aromatic and azepine ring-modified analogs of 3-hydroxy-1H-1-benzazepine-2,5-dione (HBAD) were synthesized and evaluated as antagonists at NMDA receptor glycine sites. Aromatic ring-modified HBADs were generally prepared via a Schmidt reaction with substituted 2-methoxynaphthalene-1,4-diones followed by demethylation. Electrophilic aromatic substitution of benzazepine 3-methyl ethers gave 7-substituted analogs. The preparation of multiply substituted 2-methoxynaphthalene-1,4-diones was effected via Diels-Alder methodology utilizing substituted butadienes with 2-methoxybenzoquinones followed by aromatization. Structural modifications, such as elimination of the aromatic ring, removal of the 3-hydroxyl group, and transfer of the hydroxyl group from C-3 to C-4, were also studied. An initial evaluation of NMDA antagonism was performed using a [3H]MK801 binding assay. HBADs demonstrating NMDA antagonist activity as indicated by inhibition of [3H]MK801 binding were further evaluated employing a [3H]-5,7-dichlorokynurenic acid (DCKA) glycine site binding assay. Selected HBADs were characterized for functional antagonism of NMDA and AMPA receptors using electrophysiological assays in Xenopus oocytes and cultured rat cortical neurons. Antagonist potency of HBADs showed good correlation between the different assay systems. HBADs substituted at the 8-position possessed the highest potency with the 8-methyl (5), 8-chloro (6), and 8-bromo (7) analogs being the most active. For HBAD 6, the IC50 in [3H]-DCKA binding assays was 0.013 microM and the Kb values for antagonism of NMDA receptors in oocytes (NR1a/2C) and cortical neurons were 0.026 and 0.048 microM, respectively. HBADs also antagonized AMPA-preferring non-NMDA receptors expressed in oocytes but at a lower potency than corresponding inhibition of NMDA receptors. HBADs demonstrating a high potency for NMDA glycine sites showed the highest steady-state selectivity index relative to AMPA receptors. Substitution at the 6-, 7-, and 9-positions generally reduced or eliminated glycine site affinity. Moving the hydroxyl group from C-3 to C-4 reduced receptor affinity, and potency was eliminated by the removal of the aromatic ring or the hydroxyl group. These data indicate that the HBAD series has specific structural requirements for high receptor affinity. With the exception of substitution at C-8, modified HBADs generally have a lower affinity at NMDA receptor glycine sites than the parent compound 3. Mouse maximum electroshock-induced seizure studies show that the three HBADs selected for testing have in vivo potency with the 6,8-dimethyl analog (52) being the most potent (ED50 = 3.9 mg/kg, iv).  相似文献   

14.
A series of Pyrazolo[1,5-a]pyrido[3,4-e]pyrimidin-6-ones (4a-p) was prepared by a simple synthetic procedure based on the reaction of hydroxylamine or methoxyamine with 2,3-substituted ethyl 7-dimethylaminovinyl pyrazolo[1,5-a]pyrimidin-6-carboxylates (3a-p). The antimicrobial activity of the obtained compounds was evaluated on a series of standard strains of Gram positive, Gram negative bacteria and fungi. None of the tested compounds showed significant activity.  相似文献   

15.
The enzyme DT-diaphorase catalyses the 2-electron reduction of quinones. This reaction may facilitate the detoxification of such compounds, since the hydroquinone so formed can be converted into non-toxic conjugates. There is evidence for the involvement of DT-diaphorase in the detoxification of menadione (2-methyl-1,4-naphthoquinone) in a wide range of cells and tissues in vitro, but no information is available on the possible influence of this enzyme on the harmful effects of menadione in vivo. In animals, menadione is selectively toxic to erythrocytes, causing haemolytic anaemia. In the present study, rats were treated with dicoumarol, an inhibitor of DT-diaphorase, or butylated hydroxyanisole (BHA), a substance that increases the activity of this enzyme in vivo. They were then challenged with a toxic dose of menadione. Dicoumarol increased the severity of menadione-induced haemolytic anaemia while BHA decreased it, consistent with a role for DT-diaphorase in the detoxification of menadione in vivo, as previously described in vitro.  相似文献   

16.
A group of racemic isopropyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(thienyl)-5-pyridinecarboxylates++ + 7a-f were prepared using a modified Hantzsch reaction that involved the condensation of a thienylcarboxaldehyde 4a-f with isopropyl 3-aminocrotonate 5 and nitroacetone 6. In vitro calcium channel antagonist activities were determined using a guinea pig ileum longitudinal smooth muscle (GPILSM) assay. Compounds 7a-f exhibited weaker calcium channel antagonist activity (IC50 = 10(-5) to 10(-7) M range) than the reference drug nifedipine (IC50 = 1.43 x 10(-8) M). The point of attachment of the C-4 thienyl ring system was a determinant of antagonist activity [3-thienyl (7b) > 2-thienyl (7a)]. A 5-substituent in the 2-thienyl moiety influenced antagonist activity where the potency order was 5-bromo-2-thienyl 7f > or = 5-methyl-2-thienyl 7c > 2-thienyl 7a. Although the 5-methyl-2-thienyl 7c and 3-methyl-2-thienyl 7d isomers are equipotent antagonists, the 5-bromo-2-thienyl compound 7f appears to be marginally more active than the 4-bromo-2-thienyl isomer 7e. The 2-thienyl compound 7a, unlike the 3-thienyl isomer 7b, exhibited an agonist effect on GPILSM in the absence of the muscarinic agonist carbachol. Effects of the 2-thienyl 7a and 3-thienyl 7b isomers on the magnitude of calcium current were determined in guinea pig ventricular myocytes with voltage clamp techniques. Results showed that 2-thienyl 7a inhibited calcium current (antagonist) when voltage steps were made from a potential of -40 mV. However, when voltage steps were made from -60 mV, 7a enhanced calcium current (agonist). The 3-thienyl isomer 7b had little, if any, effect on calcium current.  相似文献   

17.
The substitution of the sterically hindered carbon of the potent thyroid hormone agonist, GC-1, was effected by a reaction based on the solvolysis of the benzylic hydroxyl group. The reaction was found to proceed in high yield with a variety of nucleophiles including alcohols, thiols, allyl silanes and electron-rich aromatic compounds, providing a convenient route to the synthesis of new thyroid hormone analogues.  相似文献   

18.
In continuation of our previous work on eosinophilia inhibitors, we synthesized an additional series of inhibitors, which consisted of 5-amino-1-[(methylamino)thiocarbonyl]-1H-1,2,4-triazole derivatives and a newly developed series of 1,2,4-triazolo[1,5-a]-1,3,5-triazine derivatives. We evaluated their inhibitory activity on the airway eosinophilia model, which was induced by the intravenous (iv) injection of Sephadex particles. In the 1,2,4-triazole series with various substituents at the 3 position of the triazole ring such as 2-furyl, pyridyl, and phenoxy, none of derivatives had comparable activity to the previously reported compound GCC-AP0341, 5-amino-3-(4-chlorophenyl)-1-[(methylamino)thiocarbonyl]-1H-1,2, 4-triazole. In the triazolo[1,5-a]triazine series, 2-(4-chlorophenyl)-6-methyl-1,2,4-triazolo[1,5-a]-1,3, 5-triazine-7(6H)-thione (3h) was highly potent, and when given orally it had an ID50 value of 0.3 mg/kg, which is comparable to that of GCC-AP0341. The fact that the structure-activity relationship of these two series was quite similar suggests that a common substructure, such as the 1,2,4-triazole ring with a substituted phenyl ring at the 3 position and a thiocarbonyl moiety at the 1 position, could contribute to the activity. Our selected compound 3h was less active than GCC-AP0341 in the antigen-induced hyper-responsiveness model in guinea pigs; however, we plan to carry out further studies on eosinophil functions, especially on their activation, using our two compounds, 3h and GCC-AP0341.  相似文献   

19.
A series of indolequinones bearing various functional groups has been synthesized, and the effects of substituents on the metabolism of the quinones by recombinant human NAD(P)H:quinone oxidoreductase (NQO1) were studied. Thus 5-methoxyindolequinones were prepared by the Nenitzescu reaction, followed by functional group interconversions. The methoxy group was subsequently displaced by amine nucleophiles to give a series of amine-substituted quinones. Metabolism of the quinones by NQO1 revealed that, in general, compounds with electron-withdrawing groups at the indole 3-position were among the best substrates, whereas those with amine groups at the 5-position were poor substrates. Compounds with a leaving group at the 3-indolyl methyl position generally inactivated the enzyme. The toxicity toward non-small-cell lung cancer cells with either high NQO1 activity (H460) or no detectable activity (H596) was also studied in representative quinones. Compounds which were good substrates for NQO1 showed the highest selectivity between the two cell lines.  相似文献   

20.
The factors influencing the kinetics of the oxygen-sensitive reduction of indolequinones, including those bearing leaving groups in the (indol-3-yl)methyl position, have been studied. The hydroquinones derived from some representative indolequinones were found to autoxidize slowly in oxygenated solution at rates (effective rate constant with O2 approximately 40-300 M-1 s-1) that cannot compete with the reductive elimination of leaving groups. The rates of reaction between hydroquinone and O2 were even slower in the presence of approximately 4 microM superoxide dismutase (effective rate constant approximately 2-7 M-1 s-1), indicating the role of superoxide radicals in hydroquinone autoxidation. Since the release of the leaving groups from the hydroquinones is not significantly oxygen-sensitive, tumour selectivity requires specific reduction by enzymes that are overexpressed in some tumours. Conversely, the release of leaving groups from semiquinone radicals is inhibited by oxygen too efficiently unless the semiquinone reacts with targets on a timescale of milliseconds. Modification of redox properties has been explored with the aim of changing this oxygen sensitivity. The new 2-phenylindolequinones are approximately 60-100 mV higher in reduction potential than 2-alkyl derivatives but this is insufficient to decrease the rate of electron transfer from semiquinone to oxygen to a degree which might confer hypoxia-selective cytotoxicity. These results are discussed in the context of toxicity of EO9 and related compounds towards hypoxic rather than anoxic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号