首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study an unconventional kind of quasi-three-dimensional (3-D) photonic crystal (PhC) with circular lattice pattern: it consists of air holes in a GaAs material $({rm n}=3.408)$ along circular concentric lines. This particular PhC geometry has peculiar behavior if compared with the traditional square and triangular lattices, but it is difficult to model by using conventional numerical approaches such as wave expansion method. The resonance and the radiation aspects are analyzed by the 3-D finite-element method (FEM). The model, based on a scattering matrix approach, considers the cavity resonance frequency and evaluates the input–output relationship by enclosing the photonic crystal slab (PhCS) in a black box in order to define the responses at different input–output ports. The scattering matrix method gives important information about the frequency responses of the passive 3-D crystal in the 3-D spatial domain. A high sensitivity of the scattering parameters to the variation of the geometrical imperfection is also observed. The model is completed by the quality factor (Q-factor) estimation. We fabricated the designed circular photonic crystal over a slab membrane waveguide embedding InAs/GaAs quantum dots emitting around 1.28 $mu{hbox{m}}$. Good agreement between numerical and experimental results was found, thus validating the 3-D FEM full-wave investigation.   相似文献   

2.
A tunable optical notch filter was realized by thermally shifting the TM-like (the light's electric field perpendicular to the substrate) bandgap of a silicon photonic crystal slab W1 line-defect waveguide with silica cladding. This device is compact-its footprint is 340times16 mum2, excluding the electrode pads. The 3-dB bandwidth of the device was about 5 nm, and the extinction ratio at the center wavelength was as high as 40 dB. A maximum center wavelength shift of 17.9 nm was attained at a heating power of 0.7W, with a tuning efficiency of 25.5 nm/W. The tuning response time was less than 100 mus  相似文献   

3.
This paper presents a design method of a taper structure for highly efficient coupling between 1-D photonic crystal coupled resonator optical waveguides (1-D PC-CROWs) and input straight waveguides. We propose a new taper structure where not only air hole radius but also waveguide width are varied linearly in order to adjust the dispersion curves shift. By using the proposed tapered structure, we can connect each waveguide with high transmission over wide bandwidth. Our numerical simulation results show that a transmission of 98% around 1550 nm wavelength in a 6.6 $mu$m long taper can be obtained with a 42 nm bandwidth.   相似文献   

4.
The optical properties of two dimensional photonic crystal (PhC) waveguides were investigated using ferroelectric barium titanate (BTO) thin films as the optical medium. The photonic band structure was calculated using a 2-D finite difference time domain (FDTD) method; a broad band gap is observed that results from the high refractive index contrast. The simulated transmission spectra indicate the stop band of PhC is mainly determined by three parameters: lattice constant, refractive index contrast, and waveguide mode order. From transmission measurements the PhC with a lattice constant ${a}=420$ nm shows a strong light dispersion and the other PhC with ${a}=450$ nm shows a 120-nm broad stop band. Strong localization of visible light within the PhC cavities is demonstrated from the light scattering images. The observed strong light confinement and its spatial intensity profile due to resonance agree with the calculated profiles. From polarized optical microscopy we discovered the scattered light wavelength was highly sensitive to magnitude of the lattice constant. The optical scattering properties indicate BTO PhC can potentially serve as micrometer size electro-optically tunable switches and color filters.   相似文献   

5.
We report a thermo-optic switching effect with a high extinction ratio of 30 dB by means of filling a fluid into air holes of a solid-core photonic crystal fiber (PCF). Such an effect can perform a turn on–off operation of the transmitted light via a small temperature adjustment of $pm$10 $^{circ}hbox{C}$. The switching function attributes to the absorption of the filled fluid in combination with the interaction between the core mode and the excited “fluid rod” modes, resulting from the thermo-optic effect of the filled fluid.   相似文献   

6.
A novel two-dimensional photonic crystal slab waveguide based on an antiresonant reflecting optical waveguide (ARROW) structure is proposed and designed. Lightwaves propagating in this waveguide are confined by antiresonance reflection vertically and the photonic band gap laterally. In order to obtain the characteristics of the ARROW-based photonic crystal waveguides, the three-dimensional finite-difference time-domain simulations are performed. With a lateral adiabatic taper, a coupling efficiency of 80.3% from a single-mode fiber to the ARROW-based photonic crystal waveguide of a single-line defect is obtained. In addition, propagation losses less than 10 dB/mm and bend losses of 0.23 and 0.39 dB/bend for the designed 60$^{circ}$ and 120$^{circ}$ bends are achieved at an operating wavelength of $1.55~mu{hbox {m}}$.   相似文献   

7.
We report the study of 2-D photonic-crystal waveguide arrays (PCWA) composed of $N$ identical waveguides coupled evanescently with each other. The coupling properties of the waveguide modes are investigated using coupled-mode theory and finite-difference time domain method. One straightforward application of such an analysis is to route input power from a central waveguide to side waveguides. As a result, appropriate designs of PCWAs may permit the realization of efficient, compact and novel devices. For instance, we show that power dividers, switchers, and Mach–Zehnder interferometers can be feasible using $N =3$ channels. On the other hand, $N =5$ waveguides can divide the input power by 1/4 at a distance of approximately 37.2 $ mu{hbox {m}} $. Waveguide bends and Y-type junctions are used heavily for power transfer but they are prone to scattering losses; hence, lowering the transmission efficiency. They can be eliminated by means of PCWAs in the design of optical power distribution through photonic circuits.   相似文献   

8.
We present the design, fabrication, and characterization of a microcavity that exhibits simultaneously high transmission and large resonance quality-factor (Q-factor). This microcavity is formed by a single-row photonic crystal (PhC) embedded in a 500-nm-wide photonic wire waveguide - and is based on silicon-on-insulator. A normalized transmission of 85%, together with a Q-factor of 18 500, have been achieved experimentally through the use of carefully designed tapering on both sides of each of the hole-type PhC mirrors that form the microcavity. We have also demonstrated reasonably accurate control of the cavity resonance frequency. Simulation of the device using a three-dimensional finite-difference time-domain approach shows good agreement with the experimental results.  相似文献   

9.
This paper proposes miniaturized bandpass filters with double-folded substrate integrated waveguide (SIW) resonators using multilayer low-temperature co-fired ceramic (LTCC) technology. Formed by inserting a metal plate with two orthogonal slots into the cavity, the double-folded SIW resonator is used for the circuit size reduction with its footprint about a quarter of the conventional ${rm TE}_{101}$ mode. With LTCC technology, there is more flexibility to organize the cavities of filters because of the 3-D arrangement. The vertically stacked cavities are coupled by “L”- or “U”-shaped slots, and if arranged horizontally, by an inductive window on the common sidewall or a suspended stripline between the cavities. Through experimental measurements and simulations at both the $Ka$- $V$ -bands, it has been demonstrated that the proposed filter has compact sizes and good frequency responses. The area of the fully stacked Chebyshev filter has 88% size reduction in comparison with a three-pole planar waveguide filter, while the vertically stacked quasi-elliptic filter has 74% size reduction in comparison with a four-pole planar waveguide filter.   相似文献   

10.
In this paper, we analyze the enhancement of $chi^{(2)} $ nonlinear process in membrane-type circular photonic crystal (PhC) based on GaAs. This unconventional kind of PhC is well suited for the generation of whispering gallery modes (WGMs) due to the circular symmetric periodic pattern. By using a laser Gaussian beam at 1.55 $ mu{hbox {m}}$ as pump signal, a WGM at 1.55 $ mu{hbox {m}}$ and a second-harmonic (SH) mode at 0.775 $ mu{hbox {m}}$ are obtained. The SH will be generated in the center of the missing-hole microcavity. The periodic pattern and the microcavity are tailored and optimized providing an SH efficiency conversion as high as 50%. We predict the resonances by an accurate 2-D time-domain model including $chi^{(2)}$ nonlinearity and by a 3-D finite-element method. Finally, by using a 3-D membrane configuration, we found a total quality factor of the SH mode of the order of 35 000.   相似文献   

11.
光子晶体太赫兹波导的损耗特性   总被引:7,自引:1,他引:7  
胡婕  陈鹤鸣 《中国激光》2008,35(4):567-572
提出了一种新型光子晶体太赫兹(THz)波导,该波导包层为硅介质中含有按三角形格子周期排列的空气孔,纤芯为有机材料聚乙烯(PE).应用平面波法(PWM)分析了这种光子晶体太赫兹波导的带隙结构,研究了空气填充率变化对光子带隙(PBG)结构的影响;然后应用频域有限差分法(FDFD)对不同参数太赫兹波导的损耗进行了计算.结果表明,这是一种适合太赫兹波传输的带隙效应波导,选择较高填充率,较大孔间距,较多周期结构层数可以得到较低的泄漏损耗,选取合适的参数损耗最低值可以达到1.5 dB/km.  相似文献   

12.
Remarkable properties of optical fibers with a high-index core region and a surrounding silica/air photonic crystal cladding have recently been reported. Here we discuss the physics, the special guiding properties, and the theoretical tools developed for the modeling of these photonic crystal fibers. With an emphasis on the applicational aspects of the fibers, we study their single-mode operation, bending losses, and dispersion properties. While exhibiting certain unique properties, the high-index core photonic crystal fibers share many common features with conventional optical fibers, attributed to an operation based on the well-known mechanism of total internal reflection. Fundamentally different from all high-index core fibers, in this work we demonstrate a novel type of optical waveguide, operating truly by the photonic bandgap effect. The novel fiber has an improved photonic crystal cladding and a central low-index structural defect along which the light is guided. The novel fiber has several unique features due to its different waveguidance mechanism, including remarkable dispersion properties and the potential to localize part of the guided mode in air regions. The results presented are fundamental in the field of photonic bandgap guidance, and this new class of optical waveguide is, therefore, expected to be of future interest to a large variety of research areas.  相似文献   

13.
In this paper, we introduce an unconventional photonic crystal (PhC) geometry which defines two resonance frequencies. The presented circular PhC structure behaves as a negative uniaxial crystal and admits two preferred propagation directions defined by an extraordinary and an ordinary refractive index representing two field polarizations. The circular grating profile splits the electromagnetic field into a radial (extraordinary field) and a tangential (ordinary field) component, which represent two modes of the periodic structure. The total field in the PhC slab is generated by the superposition effect of the ordinary and extraordinary field produced in the 2-D periodic plane. This field configuration is obtained by the analogy with the dielectric multilayer structure. The presented PhC circular lattice pattern consists of air holes in a GaAs material $({n}=3.408)$ along circular concentric lines which have the same distance defined as the PhC a period. We validate the birefringence theory by the comparison between analytical and numerical results and then between the numerical and experimental ones.   相似文献   

14.
The effect of the relative intensity noise (RIN), transferred from the pump to the signal, in 1-cm-long chip scale silicon Raman amplifiers is investigated in the presence of nonlinear losses. We show that due to the short waveguide length, the reduction in fluctuations that normally occurs due to “walk-off” between pump and signal waves in fiber amplifiers is inefficient in chip scale Raman amplifiers. In the counterpropagating pump configuration, which leads to minimum frequency RIN transfer, fluctuations up to 1.5 GHz are transferred from the pump to the signal. As a case study, the noise figure degrades by as much as 11 dB in the silicon waveguide with the free carrier life time of 0.1 ns, when it is pumped with a laser with a RIN value of $-$125 dB/Hz.   相似文献   

15.
This paper is for process development of assembly technologies used to fabricate the 3-D silicon carrier system-in–package (SiP). The five assembly technologies are wafer thinning, thin flip chip attach on silicon carrier, ultra low loop wire bonding, glass cap fabrication and sealing, and silicon carrier stacking. The developed SiP has three silicon carriers with four flip chip and one wire bond die chip attached to them and the carrier is stacked one above the other to form the 3-D silicon carrier SiP. Eight-inch bumped wafer thinning down to less than 100 $mu{hbox {m}}$, lower flip chip interconnect height between the chip and the carrier down to 35 $mu{hbox {m}}$, 40–50- $mu{hbox {m}}$ low loop wire bonding on overhang by direct reverse wire bonding method using 1-mil-diameter Au wire are achieved. And investigation of three types of thin film metallization systems for wirebonding and investigation of two different methods in fabricating glass cap are also studied.   相似文献   

16.
尚勇  彭英才 《微纳电子技术》2007,44(5):235-240,253
光子晶体是近十年来迅速发展起来的一种新型人工结构的功能材料。本文简要介绍了Si基光子晶体的主要特点;着重介绍了Si基光子晶体的几种主要制备方法,如精细干式蚀刻法、胶质晶体模板法、宏观多孔Si的电化学腐蚀、多光子聚合法和核壳结构纳米晶粒镶嵌法等;概要介绍了Si基光子晶体在Si基发光器件和Si基光波导器件中的应用。对目前存在的问题进行了讨论,并展望了它的未来发展趋势。  相似文献   

17.
In this paper, an asymmetric photonic crystal (PC) waveguide is proposed for slow light transmission. A row of air holes is removed to form a line-defect waveguide, and the lateral symmetry of the waveguide is broken by shifting the holes in the PC cladding on one side along the waveguide axis. Two structural parameters are carefully adjusted: the amount of shift compared with the array of holes in the cladding on the other side, and the radius of the holes closest to the waveguide core in the shifted PC cladding. In the asymmetric waveguide, it is possible to obtain flat band modes with low group velocity (c/50) and low dispersion (on the order of 104 ps2/km) over a signal bandwidth of 40 GHz. The delay-bandwidth product (DBP) of the proposed slow-light device is analyzed and compared with the DBP of the PC waveguides reported in literatures. We find that our structure yields a significant increase in DBP, and improves the effective bandwidth in which we can obtain slow modes with both low group velocity and vanishing dispersion.  相似文献   

18.
A strongly-guided one-dimensional (1-D) waveguide called a photonic wire has high spontaneous emission coupling efficiency, enabling one to realize low-threshold lasers. Combined with the use of 1-D photonic bandgap structures consisting of arrays of holes etched within the photonic wire, novel microcavity lasers can be realized. We report the nanofabrication of a photonic bandgap structure for 1.5 /spl mu/m wavelength along a InGaAsP photonic wire, and discuss numerical simulations for its electrodynamics.  相似文献   

19.
In this paper, a wafer-level package with simultaneous through silicon via (TSV) connection and cavity hermetic sealing by low-temperature solder bonding for microelectromechanical system (MEMS) device such as resonator is presented. Wet etching technique combined with dry etching technique is utilized to achieve a “Y-shaped” through wafer interconnection structure to shorten the TSV in order to reduce cost. Ansoft ${hbox {HFSS}}^{rm TM}$ 3-D electromagnetic simulator is used to assess the transition properties of signal with frequency of the new interconnection structure. Sn solder bonding is utilized to achieve simultaneous TSV connection and cavity hermetic sealing. Average shear strength of 19.5 Mpa and excellent leak rate of around ${hbox {1.9}} times {hbox {10}} ^{-9}~{hbox {atm cc/s}}$ have been achieved, which meet the requirements of MIL-STD-883E. Kevin structure is also fabricated to measure the resistance of the metallized TSV, the resistance of the “Y-shaped” through wafer interconnection and the contact resistance of the Cu/Sn IMC bond joint.   相似文献   

20.
Non-conventional core-guided transmission windows within the visible spectral range are identified in commercial hollow-core photonic crystal fibers designed to operate at 1550 nm. These windows are likely to be related to higher-order cladding photonic bandgaps and are found to be highly dependent on the cladding microstructure, thus being affected by pressure-induced stress/deformation. 20-cm-long fiber samples are then used to demonstrate simple and temperature-independent hydrostatic pressure sensing with two different setups. While in the first setup pressure is externally applied to the fiber and results in operation in the hundreds of ${rm kgf}/{hbox {cm}} ^{2}$ (or tens of MPa) range, the second setup applies pressure directly to fiber internal microstructure and is sensitive to pressures down to a fraction of ${rm kgf}/{hbox {cm}} ^{2}$ (hundredths of MPa). The fact that pressure is directly transduced into transmitted power greatly simplifies the required sensor interrogation setup.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号