首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  目的  固体氧化物燃料电池(SOFC)是一种尖端技术,可通过电化学反应将碳氢燃料中的化学能转化为电和热,具有燃料来源广、发电效率高、余热品质高、运行安静、排放低、可模块化安装等优点,是实现化石能源高效清洁利用的有效途径之一。  方法  文章阐释了SOFC发电原理,介绍了国内外SOFC技术和产业化现状,分析了基于SOFC的分布式热电联供、联合循环发电以及煤气化燃料电池发电技术(IGFC)新一代发电系统应用场景。  结果  通过燃料电池发电技术路线和产业化现状研究,浅析了目前存在的问题,并结合我国资源禀赋和对高效清洁发电装置的市场需求,对该领域的未来发展趋势进行了展望。  结论  对比国内外在SOFC领域的技术差距,基于国内在SOFC电堆核心材料方面的优势,加大对SOFC系统集成技术攻关,为新一代以高温燃料电池为核心的清洁高效发电产业奠定基础。  相似文献   

2.
《Journal of power sources》2006,158(2):1290-1305
The evaluation of solid oxide fuel cell (SOFC) combined heat and power (CHP) system configurations for application in residential dwellings is explored through modeling and simulation of cell-stacks including the balance-of-plant equipment. Five different SOFC system designs are evaluated in terms of their energetic performance and suitability for meeting residential thermal-to-electric ratios. Effective system concepts and key performance parameters are identified. The SOFC stack performance is based on anode-supported planar geometry. A cell model is scaled-up to predict voltage–current performance characteristics when served with either hydrogen or methane fuel gas sources. System comparisons for both fuel types are made in terms of first and second law efficiencies. The results indicate that maximum efficiency is achieved when cathode and anode gas recirculation is used along with internal reforming of methane. System electric efficiencies of 40% HHV (45% LHV) and combined heat and power efficiencies of 79% (88% LHV) are described. The amount of heat loss from small-scale SOFC systems is included in the analyses and can have an adverse impact on CHP efficiency. Performance comparisons of hydrogen-fueled versus methane-fueled SOFC systems are also given. The comparisons indicate that hydrogen-based SOFC systems do not offer efficiency performance advantages over methane-fueled SOFC systems. Sensitivity of this result to fuel cell operating parameter selection demonstrates that the magnitude of the efficiency advantage of methane-fueled SOFC systems over hydrogen-fueled ones can be as high as 6%.  相似文献   

3.
Although there has been a lot of waste heat utilization studies for the air-cooled data center (DC) systems, the waste heat utilization has not been studied for the liquid-cooled DC systems, which have been rapidly gaining importance for the high-performance Information and Communication Technology facilities such as cloud computing and big data storage. Compared to the air-cooled systems, higher heat removal capacity of the liquid-cooled DC systems provides better heat transfer performance; and therefore, the waste heat of the liquid-cooled DC systems can be more efficiently utilized in the low-temperature and low-carbon energy systems such as electricity generation via polymer electrolyte membrane (PEM) fuel cells. For this purpose, the current study proposes a novel hybrid system that consists of the PEM fuel cell and the two-phase liquid-immersion DC cooling system. The two-phase liquid immersion DC cooling system is one of the most recent and advanced DC cooling methods and has not been considered in the DC waste heat utilization studies before. The PEM fuel cell unit is operated with the hydrogen and compressed air flows that are pre-heated in the DC cooling unit. Due to its original design, the hybrid system brings its own original design criteria and limitations, which are taken into account in the energetic and exergetic assessments. The power density of the PEM fuel cell reaches up to 0.99 kW/m2 with the water production rate of 0.0157 kg/s. In the electricity generation case, the highest energetic efficiency is found as 15.8% whereas the efficiency increases up to 96.16% when different multigeneration cases are considered. The hybrid design deduces that the highest exergetic efficiency and sustainability index are 43.3% and 1.76 and they are 9.4% and 6.6% higher than exergetic and sustainability performances of the stand-alone PEM fuel cell operation, respectively.  相似文献   

4.
Solid oxide fuel cell (SOFC) is a complicated system with heat and mass transfer as well as electrochemical reactions. The flowing configuration of fuel and oxidants in the fuel cell will greatly affect the performance of the fuel cell stack. Based on the developed mathematical model of direct internal reforming SOFC, this paper established a distributed parameters simulation model for cocurrent and countercurrent types of SOFC based on the volume-resistance characteristic modeling method. The steady-state distribution characteristics and dynamic performances were compared and were analyzed for cocurrent and countercurrent types of SOFCs. The results indicate that the cocurrent configuration of SOFC is more suitable with regard to performance and safety.  相似文献   

5.
In order to improve the power generation efficiency of fuel cell systems employing liquid fuels, a hybrid system consisting of solid oxide fuel cell (SOFC) and proton exchange membrane fuel cell (PEMFC) is proposed. Utilize the high temperature heat generated by SOFC to reform as much methanol as possible to improve the overall energy efficiency of the system. When SOFC has a stable output of 100 kW, the amount of hydrogen after reforming is changed by changing the methanol flow rate. Three hybrid systems are proposed to compare and select the best system process suitable for different situations. The results show that the combined combustion system has the highest power generation, which can reach 350 kW and the total electrical efficiency is 57%. When the power of the tail gas preheating system is 160 kW, the electrical efficiency can reach 75%. The PEM water preheating system has the most balanced performance, with the electric power of 300 kW and the efficiency of 66%.  相似文献   

6.
In recent years, growing attention has been given to new alternative energy sources and exergy analysis since fossil fuels cause emissions that have some negative impacts on earth such as global warming, greenhouse effect etc. New power generation systems have been developed in order to reduce or eliminate these impacts as possible. So that, new alternative energy systems have been taken place instead of fossil fuel based systems with nearly zero emission levels. One of them is solid polymer electrolyte or proton exchange membrane (PEM) fuel cell. Although it has significant advantages, there are some disadvantages such as cost, and hydrogen is not a fuel that can be easily obtained. For these reasons, efficiency of a PEM fuel cell has a great significance. Energy efficiency of a system is the most important parameter for utilization. But, energy analysis does not always show the capacity to do work potential of energy of a system. Exergy analysis must be investigated for a system in order to see available work of the system. Because of disadvantages of the PEM fuel cell, exergy analysis has quite importance. In this paper PEM fuel cell and exergy analysis of PEM fuel cell are combined and investigated. A detailed review of the past and recent research activities has been documented. The review focuses on exergy analysis of both PEM fuel cells and PEM based combined heat and power (CHP) systems at different operating parameters. It is concluded that there are a lot of parameters which effects the exergy efficiencies of systems.  相似文献   

7.
《Journal of power sources》2006,158(1):428-435
To examine the feasibility of a solid oxide fuel cell (SOFC)-powered unmanned undersea vehicle (UUV), a system level analysis is presented that projects a possible integration of the SOFC stack, fuel steam reformer, fuel/oxidant storage and balance of plant components into a 21-in. diameter UUV platform. Heavy hydrocarbon fuel (dodecane) and liquid oxygen (LOX) are chosen as the preferred reactants. A maximum efficiency of 45% based on the lower heating value of dodecane was calculated for a system that provides 2.5 kW for 40 h. Heat sources and sinks have been coupled to show viable means of thermal management. The critical design issues involve proper recycling of exhaust steam from the fuel cell back into the reformer and effective use of the SOFC stack radiant heat for steam reformation of the hydrocarbon fuel.  相似文献   

8.
The hybrid system comprised by a proton exchange membrane (PEM) fuel cell and internal combustion engine shows many advantages for vehicle applications. The hybrid system can recover the un‐reacted hydrogen from fuel cell, utilize heat in the combustion product from cylinder, or combine the advantages of both. Based on thermodynamics and electrochemistry, an indirect integration system of the PEM fuel cell and Otto cycle is established for vehicle applications. The irreversibilities such as the entropy production and overpotentials in the fuel cell, the finite‐rate heat transfer between the air in the Otto cycle and combustion chamber wall, the irreversible compression, expansion, and regeneration processes in the Otto cycle are considered. The excellence of the PEM fuel cell compared with internal combustion engine is shown in terms of energy conversion efficiency. When the vehicle is speeding or launching suddenly, not only the flow rate of natural gas into the hybrid system should be increased but also a specific coupling mode between two powertrain systems should be found. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The performance of three solid oxide fuel cell (SOFC) systems, fuelled by biogas produced through anaerobic digestion (AD) process, for heat and electricity generation in wastewater treatment plants (WWTPs) is studied. Each system has a different fuel processing method to prevent carbon deposition over the anode catalyst under biogas fuelling. Anode gas recirculation (AGR), steam reforming (SR), and partial oxidation (POX) are the methods employed in systems I-III, respectively. A planar SOFC stack used in these systems is based on the anode-supported cells with Ni-YSZ anode, YSZ electrolyte and YSZ-LSM cathode, operated at 800 °C. A computer code has been developed for the simulation of the planar SOFC in cell, stack and system levels and applied for the performance prediction of the SOFC systems. The key operational parameters affecting the performance of the SOFC systems are identified. The effect of these parameters on the electrical and CHP efficiencies, the generated electricity and heat, the total exergy destruction, and the number of cells in SOFC stack of the systems are studied. The results show that among the SOFC systems investigated in this study, the AGR and SR fuel processor-based systems with electrical efficiency of 45.1% and 43%, respectively, are suitable to be applied in WWTPs. If the entire biogas produced in a WWTP is used in the AGR or SR fuel processor-based SOFC system, the electricity and heat required to operate the WWTP can be completely self-supplied and the extra electricity generated can be sold to the electrical grid.  相似文献   

10.
党政  赵华  席光 《太阳能学报》2011,32(6):941-946
针对固体氧化物燃料电池(SOFC)与微型燃气轮机(MGT)构成的混合分布式供能系统,首先建立了一种管式SOFC准二维数值模型,优化了辐射计算,提高了热传递模型的准确性;考虑了CO及H2同时作为燃料参加电化学反应,并完善了损失计算模型;最后采用所发展的系统性能预测模型,分别在内部重整和外部重整情况下,预测比较了两种SOFC/MGT混合系统的性能,结果表明外部重整系统在系统输出功率、CO2排放以及热应力分布方面都比内部重整系统具有优势,然而这种轻微的优势是需要额外增加外部重整器的设备投资换取的。  相似文献   

11.
High temperature PEM fuel cells   总被引:14,自引:0,他引:14  
There are several compelling technological and commercial reasons for operating H2/air PEM fuel cells at temperatures above 100 °C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances.

HT-membrane development accounts for 90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation.  相似文献   


12.
An assessment is presented to use hydrogen or hydrogen-rich fuels as a vector in the Central Receiver Solar Utility (CRSU) concept.

The CRSU is conceived to meet primarily the domestic energy requirements for space heating and hot water production of a community. It normally operates to provide low grade heat with sensible seasonal heat storage and district heating systems. However, there are institutional problems connected with using sensible heat storage and low grade energy distribution systems into dwellings.

An alternative to this would be to produce hydrogen and hydrogen-rich fuels by using an advanced conversion technology and eliminate low grade heat storage and distribution systems. Two developing technologies, namely high temperature electrolysis and thermochemical processes, are considered for production of the vector. Then, an assessment is carried out at the conceptual level for fully dedicated Central Receiver Solar Utility Plants which integrate a central receiver system, thermochemical plant or electrical power generating system and synthetic fuel production plant with necessary auxiliary sub-systems.

It is shown that for a 10% capital recovery factor, the cost of hydrogen at the plant will be about $18 per GJ using thermochemical processes and about $20 per GJ using high temperature electrolysis processes.

The solar-hydrogen can also be converted to a more easily stored fuel for domestic use such as methanol, ethanol, ammonia or fuel oil. In this case, there is a distinct possibility that by using waste heavy fuels, tar sands and biomass, the cost of synthetic fuel can be considerably reduced.  相似文献   


13.
The flat-tube high power density (HPD) solid oxide fuel cell (SOFC) is a new design developed by Siemens Westinghouse, based on their formerly developed tubular type SOFC. It has increased power density, but still maintains the beneficial feature of secure sealing of a tubular SOFC. In this paper, a three-dimensional numerical model to simulate the steady state heat/mass transfer and fluid flow of a flat-tube HPD-SOFC is developed. In the numerical computation, governing equations for continuity, momentum, mass, and energy conservation are solved simultaneously. The highly coupled temperature, concentration and flow fields of the air stream and the fuel stream inside and outside the different chambers of a flat-tube HPD-SOFC are investigated. The variation of the temperature, concentration and flow fields with the current output is studied. The heat/mass transfer and fluid flow modeling and results will be used to simulate the overall performance of a flat-tube HPD-SOFC, and to help optimize the design and operation of a SOFC stack in practical applications.  相似文献   

14.
《Applied Thermal Engineering》2007,27(16):2703-2712
In the context of stationary power generation, fuel cell-based systems are being foreseen as a valuable alternative to thermodynamic cycle-based power plants, especially in small scale applications. As the technology is not yet established, many aspects of fuel cell development are currently investigated worldwide. Part of the research focuses on integrating the fuel cell in a system that is both efficient and economically attractive. To address this problem, we present in this paper a thermo-economic optimization method that systematically generates the most attractive configurations of an integrated system. In the developed methodology, the energy flows are computed using conventional process simulation software. The system is integrated using the pinch based methods that rely on optimization techniques. This defines the minimum of energy required and sets the basis to design the ideal heat exchanger network. A thermo-economic method is then used to compute the integrated system performances, sizes and costs. This allows performing the optimization of the system with regard to two objectives: minimize the specific cost and maximize the efficiency. A solid oxide fuel cell (SOFC) system of 50 kW integrating a planar SOFC is modeled and optimized leading to designs with efficiencies ranging from 34% to 44%. The multi-objective optimization strategy identifies interesting system configurations and their performance for the developed SOFC system model.The methods proves to be an attractive tool to be used both as an advanced analysis tool and as support to decision makers when designing new systems.  相似文献   

15.
A novel gas distributor for fuel cells is proposed. It has three-dimensional current-collecting elements distributed in gas-delivery fields for effective current collection and heat/mass transfer enhancement. An analysis model has been developed in order to understand the performance of the output power density when the dimensions and distributive arrangement of the current collectors are different. Optimization analysis for a planar-type SOFC was conducted in order to outline the approach in optimizing a gas-delivery field when adopting three-dimensional current-collecting elements in a fuel cell. Experimental test of a proton exchange membrane (PEM) fuel cell adopting the novel gas distributor was conducted for verification of the new approach. Significant improvement of power output was obtained for the proposed new PEM fuel cells compared to the conventional ones under the same conditions except for the different gas distributors. Both the experimental results and modeling analysis are of great significance to the design of fuel cells of high power density.  相似文献   

16.
The present paper describes numerical modelling of the radiative heat transfer process in the module chamber of an internal indirect reforming-type SOFC. The ability to do internal reforming is one of the characteristics of high-temperature fuel cells, SOFC. As in any high-temperature system, radiative heat transfer is important. In this article, heat transfer between the fuel reformer surface and all other surfaces facing the reformer surfaces is modelled. Governing equations for radiative heat transfer are described using Hottel's zone method. The resulting radiation–conduction conjugate heat transfer problems are numerically solved with a combination of Gauss–Seidel and Newton–Raphson methods. The steam reforming reaction occurring inside the fuel reformer is described using Achenbach model. The obtained results indicate that, for the development of effective indirect internal reforming, the position of the reformer in the module chamber and emissivity of the surfaces of the reformer, cell and other elements in the SOFC module all play a key role.  相似文献   

17.
Using fuel cell systems for distributed generation (DG) applications represents a meaningful candidate to conventional plants due to their high power density and the heat recovery potential during the electrochemical reaction. A hybrid power system consisting of a proton exchange membrane (PEM) fuel cell stack and an organic Rankine cycle (ORC) is proposed to utilize the waste heat generated from PEM fuel cell. The system performance is evaluated by the steady-state mathematical models and thermodynamic laws. Meanwhile, a parametric analysis is also carried out to investigate the effects of some key parameters on the system performance, including the fuel flow rate, PEM fuel cell operating pressure, turbine inlet pressure and turbine backpressure. Results show that the electrical efficiency of the hybrid system combined by PEM fuel cell stack and ORC can be improved by about 5% compared to that of the single PEM fuel cell stack without ORC, and it is also indicated that the high fuel flow rate can reduce the PEM fuel cell electrical efficiency and overall electrical efficiency. Moreover, with an increased fuel cell operating pressure, both PEM fuel cell electrical efficiency and overall electrical efficiency firstly increase, and then decrease. Turbine inlet pressure and backpressure also have effects on the performance of the hybrid power system.  相似文献   

18.
Computational fluid dynamics (CFD) and finite element analysis (FEA) are important modelling and simulation techniques to design and develop fuel cell stacks and their balance of plant (BoP) systems.The aim of this work is to design a microtubular solid oxide fuel cell (SOFC) stack by coupling CFD and FEA models to capture the multiphysics nature of the system. The focus is to study the distribution of fluids inside the fuel cell stack, the dissipation of heat from the fuel cell bundle, and any deformation of the fuel cells and the stack canister due to thermal stresses, which is important to address during the design process. The stack is part of an innovative all-in-one SOFC generator with an integrated BoP system to power a fixed wing mini unmanned aerial vehicle. Including the computational optimisation at an early stage of the development process is hence a prerequisite in developing a reliable and robust all-in-one SOFC generator system. The presented computational model considers the bundle of fuel cells as the heat source. This could be improved in the future by replacing the heat source with electrochemical reactions to accurately predict the influence of heat on the stack design.  相似文献   

19.
The heat and mass transfer characters of proton-exchange membrane (PEM) fuel cell have major impact on the performance of cell system, and suitable moisture content in the membrane is one of the most important enhancing factors of PEM fuel cell systems. In this article, the effect to different vaporization mechanism of water in the membrane is investigated numerically, the results show that the temperature of the fuel cell increases with lessens of the heat transfer coefficient, and the average temperature located in membrane is reduced most significantly by 18.03% compared to no vaporization condition in membrane for cases in which heat transfer coefficient is 50?W/m2?·?K. Furthermore, the current density with evaporation in membrane is much lower than take no account of vaporization, especially on the cathode side; meanwhile, the excess percentage of oxygen and water vapor concentration is more significantly different from the condition without vaporization when the fuel cell temperature reaches the boiling point.  相似文献   

20.
PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号