首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-healing resin systems have been discussed for over a decade and four different technologies had been proposed. However, little work on their application as composite matrices has been published although this was one of the stated aims of the earliest work in the field. This paper reports on the optimization of a solid-state self-healing resin system and its subsequent use as a matrix for high volume fraction glass fibre-reinforced composites. The resin system was optimized using Charpy impact testing and repeated healing, while the efficiency of healing in composites was determined by analysing the growth of delaminations following repeated impacts with or without a healing cycle. To act as a reference, a non-healing resin system was subjected to the same treatments and the results are compared with the healable system. The optimized resin system displays a healing efficiency of 65% after the first healing cycle, dropping to 35 and 30% after the second and third healing cycles, respectively. Correction for any healability due to further curing showed that approximately 50% healing efficiency could be achieved with the bisphenol A-based epoxy resin containing 7.5% of polybisphenol-A-co-epichlorohydrin. The composite, on the other hand, displays a healing efficiency of approximately 30%. It is therefore clear that the solid-state self-healing system is capable of healing transverse cracks and delaminations in a composite, but that more work is needed to optimize matrix healing within a composite and to develop a methodology for assessing recovery in performance.  相似文献   

2.
This paper reviews and gives new insight into earlier work by the author and his co-workers on the experimental investigation of the influence of superimposed hydrostatic pressure on the mechanical behavior and properties of the epoxy used for the matrix and unidirectionally laminated, graphite-fiber/ epoxy-matrix thick composites. The direction of the fibers was, respectively, 0°, 45° and 90° for the compressive test samples and 0°, 45° -45° and 90° for the shear samples.

Hydrostatic pressure induces very significant, often dramatic changes in the compressive and shear stress/ strain behavior of composites, and consequently in the elastic, yielding, deformation and fracture properties. The range of pressures covered for the compressive experiments was 1 bar to 4 kbar, and for the shear tests 1 bar to 6 kbar. The shear modulus (G) of the epoxy increased bilinearly with pressure, with the break, or the discontinuity point, occurring at 2 kbar. The compressive elastic modulus (E) and the shear modulus (G) of the composites increase in the same manner as for the epoxy. The break, which is located at 2 kbar, represents a pressure at which physical changes in the molecular motion of the matrix epoxy occur. That is, segmental motion of molecules between the cross-links is frozen in by 2 kbar pressure. This pressure is known as the secondary glass transition pressure of the epoxy at room temperature. Alternatively, the sub-zero secondary glass transition temperature of the epoxy is shifted to ambient temperature by 2 kbar pressure. The increase in the moduli may also be given a mechanical interpretation. The elastic or shear modulus of an isotropic, elastic material due to small compressive or shear deformations, respectively, superimposed on a finite volume deformation, which is caused by hydrostatic pressure, increases with pressure. Such an increase in E or G has been predicted using finite deformation theory of elasticity.

The normally brittle epoxy develops yielding when the superimposed hydrostatic pressure exceeds 2 kbar. The shear yield stress (1% off-set) of the epoxy increases linearly with pressure above 2 kbar. This kind of yielding behavior can be predicted by a pressure-dependent yield criterion. The compressive yield strength of the 45° and 90° composites increases bilinearly with pressure, and the shear yield strength of the 0°, 45° and 90° composites also increases bilinearly with pressure. This bilinear behavior is also due to the secondary glass transition pressure of the matrix epoxy, being located at 2 kbar. The fracture strength of the composites also increases with pressure linearly and the greatest increase occurs in the 45° composite in compression and in the −45° composite in shear. The fracture modes of the composites undergo changes with increasing hydrostatic pressure. For instance, the 0° composite undergoes a brittle-ductile transition under shear stress, while no such transition appears to set in under compressive stress. The fracture mode of the 45° composite changes from matrix failure at lower pressures to fiber failure at high pressures under shear stress.  相似文献   


3.
Lignin/epoxy composites   总被引:5,自引:0,他引:5  
This paper presents some possibilities for the use of lignin/epoxy resins in blends and composites with epoxy resins. A compatibility study was carried out by optical and electron microscopy, viscosimetric determinations and thermo-optical analysis in order to establish optimum synthesis conditions of molding mass (cast resins). Lignin/epoxy composites including various fillers (lead soap, alum earth, talc, chalk, sand, trihydrate aluminium oxide, glass fibers), plasticizer (dibutylphthalate and polyester C6) and pigments (iron-oxide and titanium dioxide) have been obtained. Lignin/epoxy composites are characterized by good dielectric, mechanical and adhesive properties. These composite materials can be used in the electronics industry.  相似文献   

4.
Even if the extent of fatigue damage in fibre-reinforced plastics is limited, it can already affect the elastic properties. Therefore, the damage initiation and propagation in composite structures is monitored very carefully. Beside the use of nondestructive testing methods (ultrasonic inspection, optical fibre sensing), the follow-up of the degradation of engineering properties such as the stiffness is a common approach.In this paper, it is proved that the Poisson’s ratio can be used as a sensitive indicator of fatigue damage in fibre-reinforced plastics. Static tests, quasi-static cyclic tests and fatigue tests were performed on [0°/90°]2s glass/epoxy laminates, and longitudinal and transverse strain were measured continuously. The evolution of the Poisson’s ratio νxy versus time and longitudinal strain εxx is studied. As the transverse strain measurement is crucial to monitor the degradation of the Poisson’s ratio, three techniques were applied to measure the transverse strain (strain gauges, mechanical extensometer and external optical fibre sensor).Finally, the technique has been applied to a totally different material: a carbon fabric thermoplastic composite. The results show a very similar degradation of the Poisson’s ratio, although no stiffness degradation can be observed during fatigue loading of this material.It is concluded that the degradation of the Poisson’s ratio can be a valuable indicator of fatigue damage, in combination with the stiffness degradation.  相似文献   

5.
Composite materials for aerospace applications through in-house R & D and through collaboration with overseas aerospace organizations and National Laboratories covering a wide spectrum including glass/carbon/kevlar fibre reinforced plastics, metal and Nomex honeycomb sandwich structures, laminated composites, metal matrix composites and metallo-ceramic composites.  相似文献   

6.
In this paper, a method is proposed for the determination of the viscoelastic behaviour of unidirectional fibre-reinforced composites. The method is based on the model of Laws and McLaughlin. The interface problem is taken into account by using anisotropic elastic coefficients for the fibre. The non-linearity of the matrix is also considered and integrated in the model. Comparisons with experimental data are performed on glass/epoxy materials.  相似文献   

7.
王春齐  江大志  肖加余 《功能材料》2012,43(11):1438-1442
先采用真空袋压法制备含CaCO3/环氧树脂表面功能层的玻璃纤维增强环氧树脂复合材料,再通过化学刻蚀与表面修饰,在玻璃纤维增强环氧树脂复合材料上制备出超疏水表面。采用扫描电镜和动/静态接触角分析仪,表征表面的形貌和疏水性,结果表明,在复合材料表面构建了具有微-纳米尺度二元粗糙结构;采用1%(质量分数)的硬脂酸修饰后,其表面与水的接触角最高达160.03°;制备的超疏水表面结构在室温环境下具有长期的稳定性。  相似文献   

8.
Although metal matrix composites (MMCs) are generally regarded as extremely difficult to machine, it is also acknowledged that their machining behaviour is not fully understood. The work reviewed here confirms this widely held view but also suggests that the machinability of these materials can be improved by appropriate selection of the reinforcing phase, its volume fraction, size, and morphology as well as the composition and hardness of the matrix material. Cemented carbide tools can be used to machine some of the less abrasive materials at slow speeds but if higher production rates are required or the more abrasive materials are to be machined, polycrystalline diamond tooling is required.  相似文献   

9.
亓鹏  朱丁  陈云贵 《功能材料》2012,43(5):657-659
采用湿法混料及高温热解法制备了锂离子电池用硅/石墨/碳复合负极材料,并研究了不同配方的复合材料结构及电化学性能。研究发现,硅含量为20%(质量分数)时,复合材料首次可逆容量为865mAh/g,循环30次后仍为757mAh/g,容量保持率可达88%,大大改善了硅基材料作为锂离子电池负极材料的电化学性能。  相似文献   

10.
Typical finite element formulations and models for unidirectional composite materials are reviewed. The application of micromechanical finite element analysis to the modelling of unidirectional fibre-reinforced metal-matrix composites is demonstrated by presenting some studies from recent publications. It is shown that while analytical models offer a simple tool for obtaining the overall response of composites, finite element analysis provides more accurate and detailed characterisation of composite properties for complicated geometries and constituent property variations. Various effects that influence the stress/strain response and fibre/matrix deformation of composites are studied through modelling. These effects include the fibre coating and reaction layer, fibre shape and distribution, metallurgical and environmental factors, stress distributions and damage. It is demonstrated that the properties and constituent phase interaction of metal-matrix composites are best modelled by finite element analysis. It is emphasized that in order to obtain good predictions, the models must be coupled with first-hand characterisations of the constituent phases and their interactions, including the thermal history of the specimens.  相似文献   

11.
The influence of particulate additions of alumina on the flexural properties of glass-fabric/epoxy composites was studied. The additions improved translaminar flexural strength, while decreasing interlaminar strength. The translaminar bending modulus showed an increasing trend whereas its interlaminar value showed a decrease, up to additions of 3 vol%. The mechanisms of deformation and the fracture features have been discussed with the aid of scanning electron microscopy.  相似文献   

12.
ABSTRACT Due to their high specific stiffness and strength, fibre-reinforced composite materials are winning through in a wide range of applications in automotive, naval and aerospace industry. Their design for fatigue is a complicated problem and a large research effort is being spent on it today. However there is still a need for extensive experimental testing or large safety factors to be adopted, because numerical simulations of the fatigue damage behaviour of fibre-reinforced composites are often found to be unreliable. This is due to the limited applicability of the theoretical models developed so far, compared to the complex multi-axial fatigue loadings that composite components often have to sustain in in-service loading conditions.
In this paper a new phenomenological fatigue model is presented. It is basically a residual stiffness model, but through an appropriate choice of the stress measure, the residual strength and thus final failure can be predicted as well. Two coupled growth rate equations for tensile and compressive damage describe the damage growth under tension–compression loading conditions and provide a much more general approach than the use of the stress ratio R . The model has been applied to fully-reversed bending of plain woven glass/epoxy specimens. Stress redistributions and the three stages of stiffness degradation (sharp initial decline – gradual deterioration – final failure) could be simulated satisfactorily.  相似文献   

13.
This paper presents the development of a constitutive model able to accurately represent the full non-linear mechanical response of polymer-matrix fibre-reinforced composites with unidirectional (UD) plies under quasi-static loading. This is achieved by utilising an elasto-plastic modelling framework. The model captures key features that are often neglected in constitutive modelling of UD composites, such as the effect of hydrostatic pressure on both the elastic and non-elastic material response, the effect of multiaxial loading and dependence of the yield stress on the applied pressure.The constitutive model includes a novel yield function which accurately represents the yielding of the matrix within a unidirectional fibre-reinforced composite by removing the dependence on the stress in the fibre direction. A non-associative flow rule is used to capture the pressure sensitivity of the material. The experimentally observed translation of subsequent yield surfaces is modelled using a non-linear kinematic hardening rule. Furthermore, evolution laws are proposed for the non-linear hardening that relate to the applied hydrostatic pressure.Multiaxial test data is used to show that the model is able to predict the non-linear response under complex loading combinations, given only the experimental response from two uniaxial tests.  相似文献   

14.
Recently, the mankind has realized that unless environment is protected, he himself will be threatened by the over consumption of natural resource as well as substantial reduction of fresh air produced in the world. Conservation of forests and optimal utilization of agricultural and other renewable resources like solar and wind energies, and recently, tidal energy have become important topics worldwide. In such concern, the use of renewable resources such as plant and animal based fibre-reinforce polymeric composites, has been becoming an important design criterion for designing and manufacturing components for all industrial products. Research on biodegradable polymeric composites, can contribute for green and safe environment to some extent. In the biomedical and bioengineered field, the use of natural fibre mixed with biodegradable and bioresorbable polymers can produce joints and bone fixtures to alleviate pain for patients. In this paper, a comprehensive review on different kinds of natural fibre composites will be given. Their potential in future development of different kinds of engineering and domestic products will also be discussed in detail.  相似文献   

15.
The lack of data related to durability is one major challenge that needed to be addressed prior to the widespread acceptance of natural fibre reinforced polymer composites for engineering applications. In this work, the combined effect of ultraviolet (UV) radiation and water spraying on the mechanical properties of flax fabric reinforced epoxy composite was investigated to assess the durability performance of this composite used for civil engineering applications. Specimens fabricated by hand lay-up process were exposed in an accelerated weathering chamber for 1500 h. Tensile and three-point bending tests were performed to evaluate the mechanical properties. Scanning electron microscope (SEM) was used to analyse the microstructures of the composites. In addition, the durability performance of flax/epoxy composite was compared with synthetic (glass and carbon) and hybrid fibre reinforced composites. The test results show that the tensile strength/modulus of the weathered composites decreased 29.9% and 34.9%, respectively. The flexural strength/modulus reduced 10.0% and 10.2%, respectively. SEM study confirmed the degradation in fibre/matrix interfacial bonding after exposure. Comparisons with other composites implies that flax fabric/epoxy composite has potential to be used for civil engineering applications when taking its structural and durability performance into account. Proper treatments to enhance its durability performance will make it more comparable to synthetic fibre reinforced composites when considering as construction building materials.  相似文献   

16.
Through-thickness reinforcement is an effective way to suppress delamination in laminated composites. Micromechanics based models are developed to study the effect of through-thickness reinforcement (stitching) in improving the Mode I delamination crack growth resistance of laminated composites. In the development of these models, two types of stitch geometries are considered. In the first case, the stitches are assumed disconnected as in many cases the top and the bottom surfaces of the stitched laminates are ground off to remove surface in-plane waviness caused by stitching loops. The force in the stitches in this case is estimated from frictional bonding between stitches and the matrix. In the second case, interconnected stitches are considered and the force carried by the stitches is modelled as Winkler elastic foundation type of stress-separation relation. The effect of stitches is expressed in terms of a single stitching parameter Gl or Gb and closed form analytical expressions for the crack-growth resistance (K R (a)) are obtained. The effects of the stitching parameter and various geometric and material properties are examined.On leave at the Department of Mechanical Engineering, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong.  相似文献   

17.
以天然鳞片石墨为原料,通过Hummers法制备氧化石墨,微波热解剥离制备出少层数的石墨烯纳米片。以硅烷偶联剂KH-560为改性剂,超声共混制备石墨烯纳米片/环氧树脂复合材料。采用FT-IR和SEM分析样品的微观结构和形貌,测试其介电性能。结果表明,随着石墨烯纳米片添加量的增加,复合材料介电常数呈现先增大后减小的趋势,当石墨烯纳米片含量为0.3%(质量分数)时,介电常数达到最大;石墨烯纳米片对复合材料介电损耗的影响与之相反;偶联改性使复合材料的介电常数增大,介电损耗减小。  相似文献   

18.
Fiber-reinforced composites, because of their superior specific strengths and stiffnesses, are used in many aircraft components. However, in this application these composites are subjected not only to fatigue loading, but to occasionally high velocity impact due to the bird injection, hail, dust, and rain. Thus, it is important to evaluate the residual life and degradation due to combined fatigue and impact loadings. Unidirectional graphite epoxy composites (MA8276-Tiger) which are used in the aerospace industry were impacted by a free falling weight at energy levels of 0.567j, 1.134j, and 1.571j [impact energy toughness (j/cm3); 0.12, 0.24, 0.34], respectively. The subsequent changes/degradation in elastic moduli, strength, toughness, and fatigue properties were measured after different number of impacts. It was found that for all energy levels these properties vary linearly with the number of impacts. Furthermore, attenuation changes is not a good ultrasonic parameter for degradation estimation, since it does not incorporate the micro- and macrocracks beyond the impact point. However, these micro- and macrocracks have significant effect on the mechanical properties. In contrast to the attenuation, the stress wave factor, which indicates the efficiency of wave propagation along the specimen, correlates very well with degradation, and it can be used effectively to measure the residual strength after impact. Ultrasonic characteristic on specimens subjected to combined fatigue and impact were also studied. Based on these experiments, it is concluded that the loss in fatigue residual life due to impact loads may be predicted by measuring the effects of the impact load on attenuation and stress wave factor. It was found that the reduction in fatigue life is proportional to sudden changes in attenuation and stress wave factor. Damage accumulation models based on Coffin-Manson equation, was suggested for impact and combined fatigue and impact. It was found that residual properties and fatigue life can be estimated from these models.  相似文献   

19.
S Chandrasekar  T N Farris 《Sadhana》1997,22(3):473-481
Ceramic materials are finished primarily by abrasive machining processes such as grinding, lapping, and polishing. In grinding, the abrasives typically are bonded in a grinding wheel and brought into contact with the ceramic surface at relatively high sliding speeds. In lapping and polishing, the ceramic is pressed against a polishing block with the abrasives suspended in between them in the form of a slurry. The material removal process here resembles three-body wear. In all these processes, the mechanical action of the abrasive can be thought of as the repeated application of relatively sharp sliding indenters to the ceramic surface. Under these conditions, a small number of mechanisms dominate the material removal process. These are brittle fracture due to crack systems oriented both parallel (lateral) and perpendicular (radial/median) to the free surface, ductile cutting with the formation of thin ribbon-like chips, and chemically assisted wear in the presence of a reactant that is enhanced by the mechanical action (tribochemical reaction). The relative role of each of these mechanisms in a particular finishing process can be related to the load applied to an abrasive particle, the sliding speed of the particle, and the presence of a chemical reactant. These wear mechanisms also cause damage to the near ceramic surface in the form of microcracking, residual stress, plastic deformation, and surface roughness which together determine the strength and performance of the finished component. A complete understanding of the wear mechanisms leading to material removal would allow for the design of efficient machining processes for producing ceramic surfaces of high quality. The research was supported in part by the National Science Foundation through grants MSS 9057082, Jorn Larsen-Basse, Program Director and DDM 9057916, Bruce Kramer, Program Director.  相似文献   

20.
The cost-reduced manufacturing of complex textile preforms suitable for liquid composite moulding of high-performance fibre-reinforced polymer composites is of significant importance for today’s aerospace industry. In this study, stitching technologies combined with thermally induced preform stabilisation by incorporation of thermoplastic binder-materials are demonstrated to be one of the key approaches towards achieving this challenging goal. However, the potential reduction of the in-plane mechanical composite properties induced by stitching and/or added binders may outweigh the cost savings and the anticipated improvements of the out-of-plane performance. In order to obtain excellent overall mechanical composite properties, innovative low-melting temperature or soluble thermoplastic stitching yarns as well as their corresponding binder non-woven mats were utilised to prepare novel preforms for non-crimped carbon fibre-reinforced epoxy composites; effectively allowing an enhanced stabilisation of the dry performs by thermobonding. These promising results emphasize the feasibility and the benefits of adopting advanced stitching technologies for high-performance composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号