首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
A Pseudomonas aeruginosa gene homologous to the fabG gene, which encodes the NADPH-dependent beta-ketoacyl-acyl carrier protein (ACP) reductase required for fatty acid synthesis, was identified. The insertional mutation of this fabG homolog (herein called rhlG) produced no apparent effect on the growth rate and total lipid content of P. aeruginosa cells, but the production of rhamnolipids was completely abrogated. These results suggest that the synthetic pathway for the fatty acid moiety of rhamnolipids is separate from the general fatty acid synthetic pathway, starting with a specific ketoacyl reduction step catalyzed by the RhlG protein. In addition, the synthesis of poly-beta-hydroxyalkanoate (PHA) is delayed in this mutant, suggesting that RhlG participates in PHA synthesis, although it is not the only reductase involved in this pathway. Traits regulated by the quorum-sensing response, other than rhamnolipid production, including production of proteases, pyocyanine, and the autoinducer butanoyl-homoserine lactone (PAI-2), were not affected by the rhlG mutation. We conclude that the P. aeruginosa rhlG gene encodes an NADPH-dependent beta-ketoacyl reductase absolutely required for the synthesis of the beta-hydroxy acid moiety of rhamnolipids and that it has a minor role in PHA production. Expression of rhlG mRNA under different culture conditions is consistent with this conclusion.  相似文献   

2.
3.
4.
5.
The Pseudomonas aeruginosa fabA and fabB genes, encoding beta-hydroxyacyl-acyl carrier protein dehydratase and beta-ketoacyl-acyl carrier protein synthase I, respectively, were cloned, sequenced, and expressed in Escherichia coli. Northern analysis demonstrated that fabA and fabB are cotranscribed and most probably form a fabAB operon. The FabA and FabB proteins were similar in size and amino acid composition to their counterparts from Escherichia coli and to the putative homologs from Haemophilus influenzae. Chromosomal fabA and fabB mutants were isolated; the mutants were auxotrophic for unsaturated fatty acids. A temperature-sensitive fabA mutant was obtained by site-directed mutagenesis of a single base that induced a G101D change; this mutant grew normally at 30 degrees C but not at 42 degrees C, unless the growth medium was supplemented with oleate. By physical and genetic mapping, the fabAB genes were localized between 3.45 and 3.6 Mbp on the 5.9-Mbp chromosome, which corresponds to the 58- to 59.5-min region of the genetic map.  相似文献   

6.
A double-tagging, dual affinity chromatographic procedure, which permits isolation of dimers independently mutated in each subunit, has been exploited to probe the functional topology of the animal fatty acid synthase. Dimers were engineered in which the chain-terminating thioesterase reaction was compromised by mutation of the (active-site) serine residue in both subunits; these dimers assembled two long-chain fatty acyl moieties, which remained covalently linked to the 4'-phosphopantetheine residues of the two acyl carrier protein domains. Significantly, dimers that contained an additional mutation that compromised the activity of either the beta-ketoacyl synthase or malonyl/acetyltransferase activity in only one subunit also assembled two long-chain acyl moieties. In contrast, in a control experiment, introduction of an additional mutation that compromised the function of the acyl carrier protein domain in only one subunit resulted in the assembly of only one long-chain acyl moiety per dimer. Because the beta-ketoacyl synthase and malonyl/acetyltransferase domains are located near the amino terminus of the polypeptide and the acyl carrier protein domain near the carboxyl terminus, these results support a modified model for the animal fatty acid synthase in which head-to-tail functional contacts are possible both within as well as between subunits.  相似文献   

7.
UDP-N-acetylglucosamine-3-O-acyltransferase (UDP-GlcNAc acyltransferase) catalyzes the first step of lipid A biosynthesis (M. S. Anderson and C. R. H. Raetz, J. Biol. Chem. 262:5159-5169, 1987). We here report the isolation of the lpxA gene of Pseudomonas aeruginosa from a library of Pseudomonas strain PAO1 expressed in Escherichia coli LE392 (J. Lightfoot and J. S. Lam, J. Bacteriol. 173:5624-5630, 1991). Pseudomonas lpxA encodes a 10-carbon-specific UDP-GlcNAc acyltransferase, whereas the E. coli transferase is selective for a 14-carbon acyl chain. Recombinant cosmid 1137 enabled production of a 3-hydroxydecanoyl-specific UDP-GlcNAc acyltransferase in E. coli. It was identified by assaying lysozyme-EDTA lysates of individual members of the library with 3-hydroxydecanoyl-acyl carrier protein (ACP) as the substrate. Cosmid 1137 contained a 20-kb insert of P. aeruginosa DNA. The lpxA gene region was localized to a 1.3-kb SalI-PstI fragment. Sequencing revealed that it contains one complete open reading frame (777 bp) encoding a new lpxA homolog. The predicted Pseudomonas LpxA is 258 amino acids long and contains 21 complete hexapeptide repeating units, spaced in approximately the same manner as the 24 repeats of E. coli LpxA. The P. aeruginosa UDP-GlcNAc acyltransferase is 54% identical and 67% similar to the E. coli enzyme. A plasmid (pGD3) containing the 1.3-kb SalI-PstI fragment complemented E. coli RO138, a temperature-sensitive mutant harboring lpxA2. LpxA assays of extracts of this construct indicated that it is > 1,000-fold more selective for 3-hydroxydecanoyl-ACP than for 3-hydroxymyristoyl-ACP. Mass spectrometry of lipid A isolated from this strain by hydrolysis at pH 4.5 revealed [M-H]- 1,684.5 (versus 1,796.5 for wild-type lipid A), consistent with 3-hydroxydecanoate rather than 3-hydroxymyristate at positions 3 and 3'.  相似文献   

8.
9.
In Saccharomyces cerevisiae, the low molecular weight acyl carrier protein (ACP) of mitochondrial type II fatty acid synthase (FAS) and the cytoplasmic type I FAS multienzyme contain 4'-phosphopantetheine as a prosthetic group. Sequence alignment studies with the recently isolated phosphopantetheine:protein transferase (PPTase), Ppt1p, from Brevibacterium ammoniagenes revealed the yeast open reading frame, YPL148C, as a potential PPTase gene (25% identical and 43% conserved amino acids). In accordance with this similarity, pantetheinylation of mitochondrial ACP was lost upon disruption of YPL148C. In contrast, biosynthesis of cytoplasmic holo-FAS remained unaffected by this mutation. According to these characteristics, the newly identified gene was designated as PPT2. Similar to ACP null mutants, cellular lipoic acid synthesis and, hence, respiration were abolished in PPT2 deletants. ACP pantetheinylation, lipoic acid synthesis, and respiratory competence were restored upon transformation of PPT2 mutants with cloned PPT2 DNA. In vitro, holo-ACP synthesis was achieved by incubating apo-ACP with coenzyme A in the presence of purified Ppt2p. The homologous yeast enzyme could be replaced, in this assay, by the ACP synthase (EC 2.7.8.7) of Escherichia coli but not by the type I FAS-specific PPTase of B. ammoniagenes, Ppt1p. These results conform with the inability of Ppt2p to activate the cytoplasmic type I FAS complex of yeast.  相似文献   

10.
UDP-GlcNAc acyltransferase (LpxA), the first enzyme of lipid A biosynthesis, catalyzes the transfer of an acyl chain activated on acyl carrier protein (ACP) to UDP-GlcNAc. LpxAs are very selective for the lengths of their acyl donor substrates. Escherichia coli LpxA prefers R-3-hydroxymyristoyl-ACP to R-3-hydroxydecanoyl-ACP by a factor of approximately 1000, whereas Pseudomonas aeruginosa LpxA prefers the opposite. E. coli G173M LpxA and the reciprocal P. aeruginosa M169G LpxA show reversed substrate selectivity in vitro and in vivo, demonstrating the existence of precise hydrocarbon rulers in LpxAs.  相似文献   

11.
Recent studies have provided evidence to implicate involvement of the core oligosaccharide region of Pseudomonas aeruginosa lipopolysaccharide (LPS) in adherence to host tissues. To better understand the role played by LPS in the virulence of this organism, the aim of the present study was to clone and characterize genes involved in core biosynthesis. The inner-core regions of P. aeruginosa and Salmonella enterica serovar Typhimurium are structurally very similar; both contain two main chain residues of heptose linked to lipid A-Kdo2 (Kdo is 3-deoxy-D-manno-octulosonic acid). By electrotransforming a P. aeruginosa PAO1 library into Salmonella waaC and waaF (formerly known as rfaC and rfaF, respectively) mutants, we were able to isolate the homologous heptosyltransferase I and II genes of P. aeruginosa. Two plasmids, pCOREc1 and pCOREc2, which restored smooth LPS production in the waaC mutant, were isolated. Similarly, plasmid pCOREf1 was able to complement the Salmonella waaF mutant. Sequence analysis of the DNA insert of pCOREc2 revealed one open reading frame (ORF) which could code for a protein of 39.8 kDa. The amino acid sequence of the deduced protein exhibited 53% identity with the sequence of the WaaC protein of S. enterica serovar Typhimurium. pCOREf1 contained one ORF capable of encoding a 38.4-kDa protein. The sequence of the predicted protein was 49% identical to the sequence of the Salmonella WaaF protein. Protein expression by the Maxicell system confirmed that a 40-kDa protein was encoded by pCOREc2 and a 38-kDa protein was encoded by pCOREf1. Pulsed-field gel electrophoresis was used to determine the map locations of the cloned waaC and waaF genes, which were found to lie between 0.9 and 6.6 min on the PAO1 chromosome. Using a gene-replacement strategy, we attempted to generate P. aeruginosa waaC and waaF null mutants. Despite multiple attempts to isolate true knockout mutants, all transconjugants were identified as merodiploids.  相似文献   

12.
A DNA fragment containing the recA gene of Gluconobacter oxydans was isolated and further characterized for its nucleotide sequence and ability to functionally complement various recA mutations. When expressed in an Escherichia coli recA host, the G. oxydans recA protein could efficiently function in homologous recombination and DNA damage repair. The recA gene's nucleotide sequence analysis revealed a protein of 344 amino acids with a molecular mass of 38 kDa. We observed an E. coli-like LexA repressor-binding site in the G. oxydans recA gene promoter region, suggesting that a LexA-like mediated response system may exist in G. oxydans. The expression of G. oxydans recA in E. coli RR1, a recA+ strain, surprisingly caused a remarkable reduction of the host wild-type recA gene function, whereas the expression of both Serratia marcescens recA and Pseudomonas aeruginosa recA gene caused only a slight inhibitory effect on function of the host wild-type recA gene product. Compared with the E. coli RecA protein, the identity of the amino acid sequence of G. oxydans RecA protein is much lower than those RecA proteins of both S. marcescens and Pseudomonas aeruginosa. This result suggests that the expression of another wild-type RecA could interfere with host wild-type recA gene's function, and the extent of such an interference is possibly correlated to the identity of the amino acid sequence between the two classes of RecA protein.  相似文献   

13.
Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the beta-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the beta-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.  相似文献   

14.
We have isolated dextran-aggregation-negative mutants of Streptococcus mutans following random mutagenesis with plasmid pVA891 clone banks. A chromosomal region responsible for this phenotype was characterized in one of the mutants. A 2.2-kb fragment from the region was cloned in Escherichia coli and sequenced. A gene specifying a putative protein of 583 amino acid residues with a calculated molecular weight of 63,478 was identified. The amino acid sequence deduced from the gene exhibited no similarity to the previously identified S. mutans 74-kDa glucan-binding protein or to glucan-binding domains of glucosyltransferases but exhibited similarity to surface protein antigen (Spa)-family proteins from streptococci. Extract from an E. coli clone of the gene exhibited glucan-binding activity. Therefore, the gene encoded a novel glucan-binding protein.  相似文献   

15.
Synthesis of the Vibrio fischeri autoinducer, a signal involved in the cell density-dependent activation of bioluminescence, is directed by the luxI gene product. The LuxI protein catalyzes the synthesis of N-acyl-homoserine lactones from S-adenosylmethionine and acylated-acyl carrier protein. We have gained an appreciation of the LuxI regions and amino acid residues involved in autoinducer synthesis by isolating and analyzing mutations generated by random and site-specific mutagenesis of luxI. By random mutagenesis we isolated 13 different single amino acid substitutions in the LuxI polypeptide. Eleven of these substitutions resulted in no detectable autoinducer synthase activity, while the remaining two amino acid substitutions resulted in reduced but detectable activity. The substitutions that resulted in no detectable autoinducer synthase activity mapped to two small regions of LuxI. In Escherichia coli, wild-type luxI showed dominance over all of the mutations. Because autoinducer synthesis has been proposed to involve formation of a covalent bond between an acyl group and an active-site cysteine, we constructed site-directed mutations that altered each of the three cysteine residues in LuxI. All of the cysteine mutants retained substantial activity as an autoinducer synthase in E. coli. Based on the analysis of random mutations we propose a model in which there are two critical regions of LuxI, at least one of which is an intimate part of an active site, and based on the analysis of site-directed mutations we conclude that an active-site cysteine is not essential for autoinducer synthase activity.  相似文献   

16.
The chemical synthesis of peptides and small proteins is a powerful complementary strategy to recombinant protein overexpression and is widely used in structural biology, immunology, protein engineering, and biomedical research. Despite considerable improvements in the fidelity of peptide chain assembly, side-chain protection, and postsynthesis analysis, a limiting factor in accessing polypeptides containing greater than 50 residues remains the time taken for chain assembly. The ultimate goal of this work is to establish highly efficient chemical procedures that achieve chain-assembly rates of approximately 10-15 residues per hour, thus underpinning the rapid chemical synthesis of long polypeptides and proteins, including cytokines, growth factors, protein domains, and small enzymes. Here we report Boc chemistry that employs O-(7-azabenzotriazol-1-yl)-N,N, N',N'-tetramethyluronium hexafluorophosphate (HATU)/dimethyl sulfoxide in situ neutralization as the coupling agent and incorporates a protected amino acid residue every 5 min to produce peptides of good quality. This rapid coupling chemistry was successfully demonstrated by synthesizing several small to medium peptides, including the "difficult" C-terminal sequence of HIV-1 proteinase (residues 81-99); fragment 65-74 of the acyl carrier protein; conotoxin PnIA(A10L), a potent neuronal nicotinic receptor antagonist; and the pro-inflammatory chemotactic protein CP10, an 88-residue protein, by means of native chemical ligation. The benefits of this approach include enhanced ability to identify and characterize "difficult couplings," rapid access to peptides for biological and structure-activity studies, and accelerated synthesis of tailored large peptide segments (<50 residues) for use in chemoselective ligation methods.  相似文献   

17.
Escherichia coli acyl carrier protein (ACP) has been reported to exist in at least two distinct conformers in solution. A novel form of ACP having an increased electrophoretic mobility on polyacrylamide gel electrophoresis was noted previously during work on beta-ketoacyl-acyl carrier protein synthase II (fabF) mutants of E. coli (Jackowski, S., and Rock, C. O.(1987) J. Bacteriol. 169, 1469-1473). These workers reported that the increased electrophoretic mobility of the ACP from fabF strains occurred irrespective of prosthetic group attachment or the state of acylation of the prosthetic group. Since these workers were unable to detect a difference between the amino acid sequence of the ACP from the fabF mutants and that of wild type ACP, they suggested that the increased electrophoretic mobility was due to an unknown post-translational modification of the polypeptide chain. We have reinvestigated these mutants and report that the increased electrophoretic mobility is due to a mutation within the gene (acpP) that encodes ACP. This mutation results in substitution of isoleucine for valine 43 of ACP. Site-directed mutagenesis of a synthetic ACP gene demonstrated that the amino acid substitution at residue 43 is the cause of the increased electrophoretic mobility. Gel filtration experiments indicated that the increased electrophoretic mobility results from the more compact structure of V43I ACP at high pH. The altered residue lies within the ACP region of greatest conformational lability, and thus the V43I substitution may shift the equilibrium toward the more compact conformation(s). The disulfide-linked dimer of V43I ACP was readily formed and had an electrophoretic migration greater than the dimer of wild type ACP, suggesting that formation of ACP.ACP dimers does not require structural deformation of the protein.  相似文献   

18.
19.
20.
beta-Ketoacyl-acyl carrier protein (ACP) synthetase II (KAS II) is one of three Escherichia coli isozymes that catalyze the elongation of growing fatty acid chains by condensation of acyl-ACP with malonyl-ACP. Overexpression of this enzyme has been found to be extremely toxic to E. coli, much more so than overproduction of either of the other KAS isozymes, KAS I or KAS III. The immediate effect of KAS II overproduction is the cessation of phospholipid synthesis, and this inhibition is specifically due to the blockage of fatty acid synthesis. To determine the cause of this inhibition, we examined the intracellular pools of ACP, coenzyme A (CoA), and their acyl thioesters. Although no significant changes were detected in the acyl-ACP pools, the CoA pools were dramatically altered by KAS II overproduction. Malonyl-CoA increased to about 40% of the total cellular CoA pool upon KAS II overproduction from a steady-state level of around 0.5% in the absence of KAS II overproduction. This finding indicated that the conversion of malonyl-CoA to fatty acids had been blocked and could be explained if either the conversion of malonyl-CoA to malonyl-ACP and/or the elongation reactions of fatty acid synthesis had been blocked. Overproduction of malonyl-CoA:ACP transacylase, the enzyme catalyzing the conversion of malonyl-CoA to malonyl-ACP, partially relieved the toxicity of KAS II overproduction, consistent with a model in which high levels of KAS II blocks access of the other KAS isozymes to malonyl-CoA:ACP transacylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号