首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
液体混合是微流控芯片的重要功能之一,微流控液体混合方式可分为主动式和被动式两种。针对目前微流控混合器存在的被动式混合效率不高和主动式混合器制作工艺复杂等问题,研究设计了一种基于雕刻机加工的低成本、高效率气动式微流控混合器。该微流控芯片采用数控雕刻机快速加工微模具,经PDMS固化、翻模、打孔和键合等工艺,实现了微流控混合器的制作。同时研究设计了多气室脉冲气体驱动模式,有效实现了微量试剂和样品的快速混合。实验结果表明,所研究的主动式微流控混合器可以产生对流混沌作用,显著提高微尺度下的混合效率,为实现低成本的微流控芯片制作和高效试剂混合的MEMS生化检测系统提供了一种有效的技术途径。  相似文献   

2.
基于狄恩流的微混合器的研究   总被引:1,自引:0,他引:1  
所设计的微混合器是一种基于狄恩流的被动式混合器,该混合器的结构特点是由多个不同半径的弯曲管道双螺旋而成,中部通过"S"形管道将输入管道和输出管道相连。首先分析了狄恩流形成的机理及特点,再通过流体计算软件CFD-ACE+三维模拟并分析了不同流速对二次流强弱以及混合程度的影响,最后利用微细加工技术制作微混合器,罗丹明B溶液与去离子水用作待混合液体,利用Image J软件获取混合图像的灰度值来分析混合器的性能。  相似文献   

3.
苗圃  张平  吴一辉 《半导体光电》2007,28(4):536-539,552
通过采用模塑法制成一种基于聚二甲基硅氧烷(PDMS)的静态微流体混合器.根据流体动力学理论对其进行了理论分析,并给出了两种流体混合的仿真分析结果.对以数值模拟为依据制作的微流体混合器进行了水与红墨水的混合实验,获得了相吻合的结果.  相似文献   

4.
一种PDMS微混合器的制备及性能分析   总被引:1,自引:0,他引:1  
介绍了一种用于微生化分析仪的PDMS(polydimethylsiloxane,聚二甲基硅氧烷)微混合器的模压制备,由于其兼有混合器与比色皿的功能,因此,对其透光及混合性能进行了分析。经实验证明,制品中经常出现的变形、气泡、条纹等缺陷均会使混合器的透射比变差,且缺陷越多光学性能越差。而所制作的PDMS混合器透光面的光学性能优秀,在340 nm的透射比达到90%,能够满足微生化分析仪的紫外、可见光检测要求。对膜厚为50μm的φ6 mm PDMS混合器进行定量检测发现,当驱动电压为3 V,驱动频率为80 Hz时,在5 s内能达到很好的混合效果。  相似文献   

5.
《微纳电子技术》2020,(2):148-154
介绍了一种基于数字化石蜡液滴微喷射技术制作微流控芯片的方法及其应用,制作的聚二甲基硅氧烷(PDMS)微流控芯片可用于微液滴的生成和两相流的微混合。实验所需玻璃微喷嘴制备简单、成本低廉。石蜡阳模的形状可自主设计,通过调节驱动电压、驱动频率和加热温度可控制石蜡液滴尺寸及石蜡线宽。利用此方法在石英玻璃基底上打印出石蜡阳模,通过PDMS溶液浇注、固化、倒模、清洗再与石英玻璃基板键合等一系列工艺,最终可实现不同内径、不同流道形状的PDMS芯片,制作过程方便快捷,成品质量较好,设计自由度较高。最终通过调整系统各项参量制作出流道内径约为235μm的PDMS微流控芯片,并利用所制作的十字型流道PDMS微流控芯片生成了微液滴,用螺旋形流道的PDMS微流控芯片完成了亮蓝、柠檬黄两种颜色水溶液的微混合。  相似文献   

6.
综述了被动微混合器的混合原理、结构、微制作技术以及在数值仿真计算等方面的研究进展。着重讨论了几种主要被动微混合原理,如多层流、混沌对流、分裂-重合、流体弯曲和压缩以及循环流动。重点分析了近年来低雷诺数下高混合效率的复合式微混合器。复合式微混合器利用其他简单的外界作用来提高其混合效率,诸如施加离心力、采用几何压缩和三个入口结构,或利用多入口结构,使其中的流体产生周期性的流动。指出随着对低雷诺数和高黏度要求的不断提高,SAR型复合式微混合器成为更为广泛的一个研究方向,其内部的分裂-重合结构单元能够使流体产生旋转,同时通过采用几何压缩结构,缩短扩散长度.从而大大提高了流体的混合效率,但同时也提高了对微制作技术的要求。  相似文献   

7.
二维变形方波微混合器混合效果   总被引:1,自引:0,他引:1  
设计并制作了多种二维变形方波微混合器,通过荧光观测及标准偏差数值分析,在低Re数(Re≤13.33)时,考察拐角和单元长度对混合器混合效果的影响。结果表明,集成拐角的混合器存在一个临界Re值1.3,当Re<1.3时,混合基于分子扩散,拐角大小对混合效率无影响,混合效率保持在28%左右;当Re>1.3时,可以产生回流,混合效率随着拐角的减小逐渐提高。对于集成6个单元、拐角为45°、单元长度(s)为3132μm的微混合器,在雷诺系数Re=13.33时,混合效率为56%,约提高了1倍;但当拐角与混合单元长度增大时,混合效率明显降低。  相似文献   

8.
基于MEMS技术的微流体混合器及相关技术   总被引:1,自引:0,他引:1  
介绍了基于MEMS技术的微流体混合器及相关技术,给出了各种微流体混合器的结构、原理和特点,同时对微管道中流体混合的仿真、实验技术以及微管道中微量流体混合程度的评价方法等作了概述。  相似文献   

9.
基于在微通道内设置障碍物可以提高混合效率的方法,以T型方波通道微混合器为基础,设计了一种新型的、具有挡板结构的被动式微混合器,并采用有限元方法建立了仿真模型,分析比较了T型直通道微混合器、T型方波通道微混合器和具有挡板结构的T型方波通道微混合器在不同雷诺数(Re)下器件内流体的流动特性和混合效率。研究结果表明,具有挡板结构的T型方波通道微混合器在挡板阻塞比为1/4时具备最优的综合性能,也即在较宽Re值范围(5~60)内可实现流体的快速、高效混合,混合效率高于95%。  相似文献   

10.
提出一种制作凹形聚二甲基硅氧烷(PDMS)微透镜阵列的方法。用数字微镜器件(DMD)代替物理掩模,建立数字灰阶无掩模光刻系统,在光刻胶上制作正方形基底凸形微透镜阵列,以此阵列为母板,采用复制方法,制作了高填充因子的正方形基底凹形PDMS微透镜阵列。实验和测试结果表明:数字灰阶无掩模光刻系统制作的微透镜阵列表面光滑,形貌良好;复制的PDMS微透镜阵列边缘清晰,表面光滑,焦面光斑光强均匀。为制作凹形微透镜阵列提供了一条制作简单、效率高、成本低、可大规模制作的新途径。  相似文献   

11.
微流控芯片在分析化学和生物检测方面有着广阔的应用前景。对集成电极的PDMS-玻璃微流控芯片的制备工艺进行了研究与分析。最终使用SU-8快速制备阳模,使用PDMS转移图形得到具有微流控通道的PDMS盖片;在玻璃基板上加工Pt电极,除了需要外露的部分电极外,其他部分以薄层PDMS保护,得到电极基板;将PDMS盖片与电极基板半固化键合制得同时具有加热和温度传导电极以及CE高压电极的PDMS-玻璃芯片。ANSYS模拟分析证明加热芯片热惯性小,加热时温度分布效果好。  相似文献   

12.
介绍了用于生化分析的一种新型微分析系统 ,并根据模拟计算和现有实验参数给出了设计方案 ,包括电泳芯片的设计、工艺制作、微机控制系统以及初步实验结果。新型的基于线性阵列电极的微型电泳芯片将会大大降低电泳电压 ,减小实验中的热效应 ,能够灵活设定分离时间、长度、电压等电泳的各项条件 ,可满足多种分离需求。新型材料PDMS使芯片制备更简单 ,实验成功率更高  相似文献   

13.
PDMS微流控光纤芯片的研制   总被引:1,自引:0,他引:1  
用集成在芯片上的光纤作为激发光源,可使激发光斑的大小与微流控沟道的深度尺寸相接近,提高了检测灵敏度,省去了光学聚焦系统.利用二次曝光的方法制作了PDMS光纤芯片,实现了光纤与沟道的对准.对PDMS光纤芯片的加工工艺、封装方法和结构特征进行了探讨.用所制作的芯片对FITC(异硫氰酸荧光素)和以FITC标记的氨基酸进行了检测,结果证明了该芯片的可行性.  相似文献   

14.
介绍了一种新型的基于免疫磁珠分选法的外周血循环肿瘤细胞(circulate tumor cell,CTC)捕捉芯片的制作方法,使得芯片的磁性微柱和流道可以同步成型,简化了制作流程,弥补了传统电铸工艺难以稳定实现高深宽比结构的不足,适应性和扩展性都比较好。同时针对人结肠癌培养细胞,结合图像处理技术,对细胞荧光图像进行了细胞的自动分割和计数,实现了一个细胞捕获和分析自动化系统,从而极大地提高了CTC检测的效率。主要研究了细胞捕获芯片的制作和图像处理的方法等。结果表明该细胞捕获分析系统可以给出较好的细胞捕获和计数结果,从而显著提高工作效率。  相似文献   

15.
以光敏微晶玻璃和PDMs为材料,通过光化学加工和等离子体改性,制备了光敏微晶玻璃-PDMs微流控芯片,并对该芯片的电渗性能进行了初步的研究.结果表明,该芯片的制作工艺简单,且电渗性能稳定.芯片的电渗速度随缓冲液浓度的增大而增加,表面活性剂的加入可以改善电渗速度,电压在1.8 kV内与电渗速度具有线性关系.  相似文献   

16.
为实现制作微针加工工艺简单、加工周期短及成本低的目的,提出了一种制作聚合物微针的新方法,这种聚合物微针的制作过程主要包括三个部分:微针原始模具的制作、聚合物微针模具的制作和浇铸工艺复制微针。通过KOH腐蚀液刻蚀晶面为{100}的Si片和紫外线对准光刻SU8胶得到由Si-SU8胶构成的原始模具,再在该模具上注入聚二甲基硅氧烷(PDMS)进行转模,固化脱模后在PDMS微针二级模具表面溅射一层Cu/Cr金属薄膜,然后再注入PDMS,得到最终的聚合物微针模具,对该模具进行浇铸工艺,便可批量制作微针。通过浇注PDMS获得微针初始结构,使针尖和针体合为一体,提高了脱模的可靠性;通过改变设计,能得到不同截面尺寸和长度的微针,因此这种方法具有很高的灵活性。  相似文献   

17.
This paper describes the fabrication and characterization of fluidic dipole antennas that are reconfigurable, reversibly deformable, and mechanically tunable. The antennas consist of a fluid metal alloy injected into microfluidic channels comprising a silicone elastomer. By employing soft lithographic, rapid prototyping methods, the fluidic antennas are easier to fabricate than conventional copper antennas. The fluidic dipole radiates with ≈90% efficiency over a broad frequency range (1910–1990 MHz), which is equivalent to the expected efficiency for a similar dipole with solid metallic elements such as copper. The metal, eutectic gallium indium (EGaIn), is a low‐viscosity liquid at room temperature and possesses a thin oxide skin that provides mechanical stability to the fluid within the elastomeric channels. Because the conductive element of the antenna is a fluid, the mechanical properties and shape of the antenna are defined by the elastomeric channels, which are composed of polydimethylsiloxane (PDMS). The antennas can withstand mechanical deformation (stretching, bending, rolling, and twisting) and return to their original state after removal of an applied stress. The ability of the fluid metal to flow during deformation of the PDMS ensures electrical continuity. The shape and thus, the function of the antenna, is reconfigurable. The resonant frequency can be tuned mechanically by elongating the antenna via stretching without any hysteresis during strain relaxation, and the measured resonant frequency as a function of strain shows excellent agreement (±0.1–0.3% error) with that predicted by theoretical finite element modeling. The antennas are therefore sensors of strain. The fluid metal also facilitates self‐healing in response to sharp cuts through the antenna.  相似文献   

18.
A package design, fabrication process, and assembly process to hermetically seal the microstructure area of a microoptoelectromechanical system (MOEMS) at the chip level is presented and evaluated. The packaged chip is fabricated using the Bosch deep reactive ion etching (DRIE) process on silicon on insulator (SOI) substrates. The packaging structures are formed during the batch fabrication of the MOEMS device. A hermetic seal is formed via an indium solder ring around the perimeter of the MOEMS chip that span channels etched in the silicon for optical fibers. The seal is made between the device chip, metallized optical fibers, and a cap chip with a fluxless soldering process. The integrity of the package is evaluated through die shear, fiber pull, and highly accelerated life testing (HALT).  相似文献   

19.
A very simple polydimethylsiloxane (PDMS) pattern‐transfer method is devised, called buffered‐oxide etchant (BOE) printing. The mechanism of pattern transfer is investigated, by considering the strong adhesion between the BOE‐treated PDMS and the SiO2 substrate. PDMS patterns from a few micrometers to sub‐micrometer size are transferred to the SiO2 substrate by just pressing a stamp that has been immersed in BOE solution for a few minutes. The patterned PDMS layers work as perfect physical and chemical passivation layers in the fabrication of metal electrodes and V2O5 nanowire channels, respectively. Interestingly, a second stamping of the BOE‐treated PDMS on the SiO2 substrate pre‐patterned with metal as well as PDMS results in a selective transfer of the PDMS patterns only to the bare SiO2. In this way, the fabrication of a device structure consisting of two Au electrodes and V2O5 nanowire network channels is possible; non‐ohmic semiconducting I–V characteristics, which can be modeled by serially connected percolation, are observed.  相似文献   

20.
徐胜 《光通信技术》2011,35(9):29-31
介绍了一种制备金属可调谐光栅的新技术.首先采用紫外光刻技术将光栅结构制备至PDMS(聚二甲基硅氧烷)基底,并在其上蒸镀金属Cr层及Ag层,然后采取金属举离工艺得到金属光栅.利用PDMS高弹性的特点,通过机械拉伸PDMS纵、横向拉伸程度,对金属光栅周期进行连续调谐,获得预定的目标周期.实验结果表明,金属光栅调谐范围超过其...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号