首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据掘进工作面前方支承压力分布特征,建立了掘进工作面前方煤体的压力容器模型.通过分析认为,该模型满足压力容器爆炸的2个条件:气体迅速膨胀和容器壁脆性断裂.进而,基于压力容器发生物理爆炸前的孕育、爆炸后的能量及破坏能力,解释了煤与瓦斯突出的预兆、基本特点和一般规律,并分析了石门自行突出等问题的原因.最后,基于压力容器物理爆炸条件,给出了煤与瓦斯突出的预测指标和防突施工的努力方向,并对已有防突措施进行分析和评价.煤与瓦斯突出的压力容器物理爆炸假说的提出,对揭示煤与瓦斯突出机理具有重要意义.  相似文献   

2.
In order to explain the mechanism for gas outburst, the process of evolving fractures in coal seams is described using system dynamics with variable boundaries. We discuss the failure modes of coal containing gas and then established the flow rules after failure. The condition under which states of deformation convert is presented and the manner in which these convert is proposed. In the end, the process of gas outbursts is explained in detail. It shows that a gas outburst is a process in which the boundaries of coal seams are variable because of coal failure. If the fractures are not connected or even closed owing to coal/rock stress, fractured zones will retain a certain level of carrying capacity because of the self-sealing gas pressure. When the accumulation of gas energy reaches its limit, coal seams will become unstable and gas outbursts take place.  相似文献   

3.
Based on the engineering observations of coal and gas outbursts during mining processes and the experimental results,we built a thin plate mechanical model for layered and spalled coal bodies.We studied the mechanical mechanism of outbursts,due to instability,of thin plates of coal rocks under the action of in-plane load and normal load,by using the catastrophe theory.The total potential function is derived for the layered rock system,the cusp catastrophe model for the system is established,the bifurcation set that makes the system unstable is given,the process in which gradual change of action forces leads to catastrophic change of state is analyzed,and the effect of movement path of point (P,q) in the control space on the stability of rock plate is analyzed.The study results show that during the process of coal mining,the stability of the layered coal bodies depends not only on its physical properties and dimensions but also on the magnitudes and changing paths of the in-plane load and the normal load.When the gas in the coal bodies ahead of the mining face is pre-drained,the gas pressure can be reduced and the normal load q can be lowered.Consequently,disasters such as coal and gas outbursts can be effectively prevented.  相似文献   

4.
Estimating the intensity of outbursts of coal and gas is important as the intensity and frequency of outbursts of coal and gas tend to increase in deep mining. Fully understanding the major factors contributing to coal and gas outbursts is significant in the evaluation of the intensity of the outburst. In this paper, we discuss the correlation between these major factors and the intensity of the outburst using Analysis of Variance(ANOVA) and Contingency Table Analysis(CTA). Regression analysis is used to evaluate the impact of these major factors on the intensity of outbursts based on physical experiments. Based on the evaluation, two simple models in terms of multiple linear and nonlinear regression were constructed for the prediction of the intensity of the outburst. The results show that the gas pressure and initial moisture in the coal mass could be the most significant factors compared to the weakest factor-porosity. The P values from Fisher's exact test in CTA are: moisture(0.019), geostress(0.290), porosity(0.650), and gas pressure(0.031). P values from ANOVA are moisture(0.094), geostress(0.077), porosity(0.420), and gas pressure(0.051). Furthermore, the multiple nonlinear regression model(RMSE: 3.870) is more accurate than the linear regression model(RMSE: 4.091).  相似文献   

5.
A proposed concept of outburst initiation examines the release of a large amount of gas from coal seams resulted from disintegrating thermodynamically unstable coal organic matter(COM). A coal microstructure is assumed to getting unstable due to shear component appearance triggered by mining operations and tectonic activities considered as the primary factor while COM disintegration under the impact of weak electric fields can be defined as a secondary one. The energy of elastic deformations stored in the coal microstructure activates chemical reactions to tilt the energy balance in a ‘‘coal–gas" system.Based on this concept a mathematical model of a gas flow in the coal where porosity and permeability are changed due to chemical reactions has been developed. Using this model we calculated gas pressure changes in the pores initiated by gas release near the working face till satisfying force and energy criteria of outburst. The simulation results demonstrated forming overpressure zone in the area of intensive gas release with enhanced porosity and permeability. The calculated outburst parameters are well combined with those evaluated by field measurements.  相似文献   

6.
Coal and gas outburst is an extremely complex dynamic disaster in coal mine production process which will damage casualties and equipment facilities, and disorder the ventilation system by suddenly ejecting a great amount of coal and gas into roadway or working face. This paper analyzed the interaction among the three essential elements of coal and gas outburst dynamic system. A stress-seepage-damage coupling model was established which can be used to simulate the evolution of the dynamical system, and then the size scale of coal and gas outburst dynamical system was investigated. Results show that the dynamical system is consisted of three essential elements, coal-gas medium(material basis), geology dynamic environment(internal motivation) and mining disturbance(external motivation). On the case of C13 coal seam in Panyi Mine, the dynamical system exists in the range of 8–12 m in front of advancing face. The size scale will be larger where there are large geologic structures. This research plays an important guiding role for developing measures of coal and gas outburst prediction and prevention.  相似文献   

7.
Gas outbursts in underground mining occur under conditions of high gas desorption rate and gas content, combined with high stress regime, low coal strength and high Young’s modulus. This combination of gas and stress factors occurs more often in deep mining. Hence, as the depth of mining increases, the potential for outburst increases. This study proposes a conceptual model to evaluate outburst potential in terms of an outburst indicator. The model was used to evaluate the potential for gas outburst in two mines, by comparing numerical simulations of gas flow behavior under typical stress regimes in an Australian gassy mine extracting a medium-volatile bituminous coal, and a Chinese gassy coal mine in Qinshui Basin (Shanxi province) extracting anthracite coal. We coupled the stress simulation program (FLAC3D) with the gas simulation program (SIMED II) to compute the stress and gas pressure and gas content distribution following development of a roadway into the targeted coal seams. The data from gas content and stress distribution were then used to quantify the intensity of energy release in the event of an outburst.  相似文献   

8.
Based on the particularities of gas outbursts,i.e.,low gas beating capacity and low gas pressure in the"Three Soft"coal seam in western Henan,we applied the theories of plate tectonics and regional structural evolution to investigate the mechanism of this seam and its impact on the coal seam gas formation.Our investigation revealed that coal and gas outbursts are distributed in a strip in a NW direction,with a number of high-penetration mines scattered towards the south side and low-gas mines largely located on the north side.We analyzed the statistics of 38 gas explosions and the rock-coal sturdiness number coefficient f of 167sampling sites in the region and found the gas outburst mechanism that features a"low indicator outburst phenomenon".The mechanism is characterized by structural coal as its core,a low gas bearing capacity,low gas pressure and sturdiness coefficient f mostly less than 0.3.Our research results provide a theoretical foundation for effective control of gas disasters.  相似文献   

9.
A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China.  相似文献   

10.
针对两软一硬煤层特殊的瓦斯地质条件,以云盖山井田一矿二1煤层为例,探寻了两软一硬煤层煤与瓦斯突出的控制因素,分析了掘进工作面掘进期间突出预测指标的分布特征,总结归纳了"两软一硬"煤层煤与瓦斯突出发生规律.研究结果表明,由于地质构造变动,云盖山一矿二1煤层产状变化较大,煤层倾角发生急剧变化的地带,地应力集中;受层间滑动构造的影响,煤层厚度变化较大,具有突然增厚、变薄以至尖灭、挤灭现象;二1煤层构造软煤呈连续层状发育.因此,在煤层薄、厚交接处(煤层急剧变化带),小断层附近,应力集中,瓦斯积聚,煤体破坏严重,易发生突出.此项研究,可为地质条件类似矿井开展瓦斯地质研究和瓦斯灾害防治工作提供方法借鉴和理论指导.  相似文献   

11.
构造煤及其对煤与瓦斯突出的控制作用   总被引:32,自引:4,他引:28  
高空隙率、低透气性使构造煤能够保持较高的瓦斯压力 ;破碎性、“隔离”作用及“气垫”作用 ,使构造煤抵御外力作用的能力大大降低 ;构造煤变形幅度大的特性 ,为瓦斯的迅速解吸、放散和快速流动创造了条件 ;构造煤薄弱分层或“通道层”的存在 ,则为煤与瓦斯突出的初始激发和持续发展奠定了基础 ;上述因素的共同作用 ,影响和制约了煤与瓦斯突出的强度和分布 .尽管如此 ,一定厚度的构造煤的存在只是发生煤与瓦斯突出的必要条件和有利条件 ,而非充分条件 .  相似文献   

12.
The permeability of coal ahead of the working face obviously changes dues to changes in abutment pressure. The formation and evolution of gas flow channels within the abutment pressure area was studied by analyzing the fracture extension mechanism and fracture development in different zones of the abutment pressure area. Fracture and damage mechanics theory is used to understand the observations. The following two techniques were used to understand the evolution of gas flow channels: field observation of the characteristic fractures at different positions relative to the working face and fluorescence micrographs of prepared coal samples. Bending tensile fractures develop along an approximately vertical direction that forms a microscopic network of channels in areas of stress concentration. The abutment pressure affects the local stress and, hence, the local gas conduction. The fractures induced by large deformation and plastic flow form macroscopically networked channels in the reduced stress area. Closer to the working face the gas flow channels evolve from microscopic to macroscopic and from isolated to network. Gas permeability continuously increases during this time. This is corroborated by field observations of the displacement of top coal and the gas flow from gas extraction drillings.  相似文献   

13.
淮南矿区井田小构造对煤与瓦斯突出的控制作用   总被引:5,自引:1,他引:5  
井田小构造要素是控制煤与瓦斯突出的主要地质因素,它综合影响其他因素,会造成不同破坏程度的煤体结构.对淮南矿区煤与瓦斯突出点构造资料的统计表明,突出点受构造控制的占近64%,而煤、岩巷中的构造控制突出占近72%,突出点由小断层引起煤层产状及煤体结构强烈揉皱的占100%.淮南矿区煤与瓦斯突出点的构造组合形式分断层构造、断层与褶皱叠加和褶皱构造三类,其中断层组合又分地堑型、阶梯型、断层交汇型、挤压构造型和顺层断层型五种.小构造发育是造成煤与瓦斯突出平面分区性和空间分带性的主要原因,构造煤发育程度是造成煤与瓦斯突出发生的直接原因;必须进一步加强小构造对构造煤发育控制范围的研究,提高煤与瓦斯突出预测预报地质构造指标的可靠性.  相似文献   

14.
The sudden and violent nature of coal and gas outbursts continues to pose a serious threat to coal mine safety in China. One of the key issues is to predict the occurrence of outbursts. Current methods that are used for predicting the outbursts in China are considered to be inadequate, inappropriate or impractical in some seam conditions. In recent years, Huainan Mining Industry Group (Huainan) in China and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia have been jointly developing technology based on gas content in coal seams to predict the occurrence of outbursts in Huainan. Significant progresses in the technology development have been made, including the development of a more rapid and accurate system in determining gas content in coal seams, the invention of a sampling-while-drilling unit for fast and pointed coal sampling, and the coupling of DEM and LBM codes for advanced numerical simulation of outburst initiation and propagation. These advances are described in this paper.  相似文献   

15.
A better understanding of gas-solid coupling laws for deep, gassy coal seams is vital for preventing the compound dynamic disasters such as rock burst and gas outburst. In this paper, a gas-solid coupling theoretical model under the influence of ground stress, gas pressure, and mining depth is established and simulated by using COMSOL Multiphysics software. Research results indicate that under the influence of factors such as high ground stress and gas pressure, the mutual coupling interaction between coal and gas is much more significant, which leads to the emergence of new characteristics of gas compound dynamic disasters. Reducing the ground stress concentration in front of the working face can not only minimize the possibility of rock burst accidents, which are mainly caused by ground stress, but also can weaken the role of ground stress as a barrier to gas, thereby decreasing the number of outburst accidents whose dominant factor is gas. The results have a great theoretical and practical significance in terms of accident prevention, enhanced mine safety, disaster prevention system design, and improved accident emergency plans.  相似文献   

16.
介绍了演马庄煤矿 2 70 2工作面突出煤层炮采放顶煤效果检验的方法和防止煤与瓦斯突出所采取的措施 ,提出突出煤层炮采放顶煤工作面瓦斯抽放是防止煤与瓦斯突出的有效手段 ,当工作面有煤与瓦斯突出危险时 ,采取恰当的防突措施 ,能够降低煤与瓦斯突出的危险程度 ,可供同类工作面回采时借鉴  相似文献   

17.
Outburst of coal and gas represents a significant risk to the health and safety of mine personnel working in development and longwall production face areas. There have been over 878 outburst events recorded in twenty-two Australian underground coal mines. Most outburst incidents have been associated with abnormal geological conditions.Details of Australian outburst incidents and mining experience in conditions where gas content was above current threshold levels are presented and discussed. Mining experience suggests that for gas content below 9.0 m3/t, mining in carbon dioxide (CO2) rich seam gas conditions does not pose a greater risk of outburst than mining in CH4 rich seam gas conditions. Mining experience also suggests that where no abnormal geological structures are present that mining in areas with gas content greater than the current accepted threshold levels can be undertaken with no discernible increase in outburst risk. The current approach to determining gas content threshold limits in Australian mines has been effective in preventing injury from outburst, however operational experience suggests the current method is overly conservative and in some cases the threshold limits are low to the point that they provide no significant reduction in outburst risk. Other factors that affect outburst risk, such as gas pressure, coal toughness and stress and geological structures are presently not incorporated into outburst threshold limits adopted in Australian mines. These factors and the development of an outburst risk index applicable to Australian underground coal mining conditions are the subject of ongoing research.  相似文献   

18.
Based on the particularities of gas outbursts,i.e.,low gas bearing capacity and low gas pressure in the "Three Soft" coal seam in western Henan,we applied the theories of plate tectonics and regional structural evolution to investigate the mechanism of this seam and its impact on the coal seam gas formation.Our investigation revealed that coal and gas outbursts are distributed in a strip in a NW direction,with a number of high-penetration mines scattered towards the south side and low-gas mines largely located on the north side.We analyzed the statistics of 38 gas explosions and the rock-coal sturdiness number coefficient f of 167 sampling sites in the region and found the gas outburst mechanism that features a "low indicator outburst phenomenon".The mechanism is characterized by structural coal as its core,a low gas bearing capacity,low gas pressure and sturdiness coefficient f mostly less than 0.3.Our research results provide a theoretical foundation for effective control of gas disasters.  相似文献   

19.
根据工作面掘进期间瓦斯突出危险性、瓦斯涌出特点及回采前瓦斯预抽效果等资料的综合分析 ,对回采工作面进行块段划分并有针对性地采取工作面瓦斯抽放、浅孔松动爆破、控制回风流瓦斯浓度等防治突出措施 ,有效地防止了回采期间煤与瓦斯突出 .  相似文献   

20.
The initial process of coal and gas sudden outburst is studied in the article when under the influence of rock and gas pressure the part of a coal seam layer(a coal section) is squeezed out from the mouth of the future outburst cavity in a jump-like manner into the working. Geo-mechanical criterion for a part of a coal seam layer outsqueezing in the form of the relation of active(squeezing out) and passive(preventing the outsqueezing) forces is defined in the article. Based on it, the geophysical criterion is defined by expressing basic physical parameters through geo-physical ones: the current stress is defined by spectral-acoustic method through the ratio of high frequency and low-frequency components of an acoustic signal, which is generated into a face working space by the mining equipment operating in the face; in-situ gas pressure is defined by gas analytical method by the concentration of methane in the atmosphere of the working; the strength of the most broken coal layer is defined by a strength measuring device(a device for measuring the depth of a steal cone punched into the coal by a spring mechanism). This paper studies the influence of acoustic, strength and filtrating and collecting properties of a face working space on the limit value of an obtained geophysical criterion of pre-outburst squeezing of a coal ‘‘plug" out of the mouth of the future outburst cavity into the working.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号