首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Butyl triphenyl phosphonium bromide (BuTPPB) has been evaluated as a corrosion inhibitor for mild steel in 0.5 M H2SO4 solutions using galvanostatic polarisation and potentiostatic polarisation measurements. The study was also complemented by infra red (IR) spectroscopy, scanning electron microscopy (SEM) and quantum chemical calculations. Galvanostatic polarisation measurements showed that the presence of BuTPPB in aerated 0.5 M H2SO4 solutions decreases corrosion currents to a great extent and the corrosion rate decreases with increasing inhibitor concentration at a constant temperature. At 298K, inhibition efficiency was found to be 94.5% for 10−7 M BuTPPB which increased to about 99% for the BuTPPB concentration of 10−2 M. The effect of temperature on the corrosion behaviour of mild steel was studied at five different temperatures ranging from 298 to 338K. The polarisation curves clearly indicate that BuTPPB acts as a mixed type inhibitor. Adsorption of BuTPPB on the mild steel surface follows the Langmuir isotherm.Potentiostatic polarisation measurements showed that passivation was observed only for lower BuTPPB concentrations (10−5 and 10−7 mol l−1) for the mild steel in 0.5 M H2SO4. IR and SEM investigations also confirmed the adsorption of BuTPPB on the mild steel surface in 0.5 M H2SO4 solutions. The molecular parameters obtained using PM3 semi-empirical method, were correlated with the experimentally measured inhibitor efficiencies.  相似文献   

2.
A newly synthesized oxadiazol-triazole derivative (TOMP), was investigated as corrosion inhibitor of mild steel in 0.5 M H2SO4 solution using weight loss measurements, polarization and electrochemical impedance spectroscopy (EIS) methods. Results obtained revealed that TOMP is effective corrosion inhibitor for mild steel in sulphuric acid and its efficiency attains more than 97.6% at 298 K. The number of water molecules (X) replaced by a molecule of organic adsorbate was determined from the substitutional adsorption isotherms applied to the data obtained from the weight loss experiments performed on mild steel specimen in acidic solution in the 298-333 K range.  相似文献   

3.
The corrosion inhibition characteristics of some pharmaceutical compounds on aluminium 6063 in 0.5 mol l−1 H3PO4 has been studied using weight loss and galvanostatic polarization techniques. Results showed that the inhibition occurs through adsorption of the inhibitor molecules on the metal surface. The inhibition efficiency increased with increasing inhibitor concentration, but decreased with increasing temperature. The adsorption of first group pharmaceutical compounds on the metal surface is found to obey Frumkin’s adsorption isotherm, but the adsorption of second group pharmaceutical compounds is found to obey Temkin’s adsorption isotherm. Thermodynamic parameters for adsorption process were determined. Galvanostatic polarization studies showed that first and second groups’ pharmaceutical compounds are mixed-type inhibitors and the results obtained from the two techniques are in good agreement.  相似文献   

4.
Three ferrocene derivatives, namely 1,1′-diacetylferrocene (Diacetyl Fc), 1,1′-diformylferrocene (Diformyl Fc) and 2-benzimidazolythioacetylferrocene (BIM Fc) were synthesized and their inhibitive effects against mild steel corrosion in aerated 0.5 M H2SO4 and 1 M HCl solutions were evaluated. Corrosion measurements based on polarization resistance (Rp), potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) indicate that Diacetyl Fc, in most cases, accelerates mild steel corrosion in HCl while Diformyl Fc and BIM Fc act as weak inhibitors. In H2SO4 solution, ferrocene derivatives show good inhibition performance. The efficiency of the inhibitors follows the order: BIM Fc > Diformyl Fc ? Diacetyl Fc. Adsorption of both Diacetyl Fc and Diformyl Fc obey Langmuir adsorption isotherm with very low value of free energy of adsorption ΔG° for the Diformyl Fc (physisorption) while adsorption of BIM Fc follows that of Frumkin with high negative value of ΔG° (chemisorption). Both Diformyl Fc and BIM Fc act as mixed-type inhibitors with predominant effect on the anodic dissolution of iron. Analysis of the polarization curves and impedance spectra indicates that charge transfer process mainly controls mild steel corrosion in H2SO4 solution without and with ferrocene compounds. The mechanism of corrosion inhibition or acceleration by ferrocene derivatives was discussed in the light of the molecular structure of the additives.  相似文献   

5.
Alkaloid extract of Rauvolfia serpentina was tested as corrosion inhibitor for mild steel in 1 M HCl and H2SO4 using weight loss method at three different temperatures, viz., 303, 313, and 323 K, potentiodynamic polarization, electrochemical impedance spectroscopy and scanning electron microscope (SEM) studies. It is evident from the results of this study that R. serpentina effectively inhibits the corrosion in both the acids through adsorption process following Tempkin adsorption isotherm. The protection efficiency increased with increase in inhibitor concentration and temperature. Free energy of adsorption calculated from the temperature studies also revealed the chemisorption. The mixed mode of action exhibited by the inhibitor was confirmed by the polarization studies while SEM analysis substantiated the formation of protective layer over the mild steel surface.  相似文献   

6.
In this study, the inhibition effect of different concentrations of benzidine possessing amine groups in its structure on the corrosion behavior of mild steel (MS) in 1.0 M HCl solution at 293 K temperature was practiced in both short and long immersion times by measuring electrochemical impedance spectroscopy (EIS), hydrogen evolution (V H2t) and change of open circuit potential (E ocp t). For short-term tests, potentiodynamic polarization and linear polarization resistance (R lp ) were also studied. Polarization data indicate that this compound act as mixed-type inhibitor for mild steel in 1.0 M HCl. With regard to the results cited, it was identified that the increase in the inhibitor efficiencies with concentration was emanated from the adsorption of benzidine molecules on the electrode surface. Pertinent to this adsorption, it followed Langmuir isotherm. Adsorption equilibrium constant and adsorption free energy were determined. The effect of temperature on the corrosion behaviour in the absence of any inhibitor and in the presence of 75 mM benzidine was studied in the range of 293–323 K. Activation energies (E a *) were calculated from the obtained corrosion rates at different temperatures. Furthermore, in order to identify the adsorption mechanism of the inhibitor on the metal surface, the zero-charge potential (PZC) was determined by EIS measurement technique. Surface morphology of mild steel electrodes were emerged by means of the scanning electron microscope.  相似文献   

7.
The inhibition of mild steel corrosion in aerated 0.5 N H2SO4 solution was investigated using potentiodynamic polarization studies (Tafel), linear polarization studies, electrochemical impedance spectroscopy studies, adsorption studies, and surface morphological studies. The effect of inhibitor concentration on corrosion rate, the effect of temperature, degree of surface coverage, adsorption kinetics, and surface morphology are investigated. The inhibition efficiency increased markedly with increase in the additive concentration and decreased slightly with increasing temperature. The presence of DMSTT decrease the double-layer capacitance and increase the charge transfer resistance. The value of activation energy (E a) of metal corrosion, adsorption equilibrium constant (K ads), and free energy of adsorption (ΔG ads) were calculated from the temperature dependence of corrosion current. The adsorption of inhibitor molecule on mild steel surface follow Langmuir isotherm. DMSTT offers excellent inhibition properties and acts as a mixed-type inhibitor.  相似文献   

8.
The physical behavior of three selected thiazole derivatives, namely 2-Amino-4-(p-tolyl)thiazole (APT), 2-Methoxy-1,3-thiazole (MTT) and Thiazole-4-carboxaldehyde (TCA) at iron (1 1 0) surface dissolved in aqueous solution were studied via molecular dynamics (MD) simulations. From the calculated binding energies, APT showed preferred adsorption on the steel surface among the three tested thiazole derivatives. The inhibition performance of the three thiazoles on the corrosion of mild steel in 0.5 M H2SO4 solutions was investigated at 25 °C. Measurements were conducted under various experimental conditions using weight loss, Tafel polarization and electrochemical impedance spectroscopy. Electrochemical frequency modulation (EFM) technique was also employed here to make accurate determination of the corrosion rates and test validation of the Tafel extrapolation method for measuring corrosion rates. Polarization curves showed that the three thiazole derivatives were of mixed-type inhibitors for mild steel corrosion in 0.5 M H2SO4 solution. EFM results were in agreement with other traditional chemical and electrochemical techniques used in corrosion rate measurements. Chemical and electrochemical measurements are consistent with computational study that APT is the most effective inhibitor among the tested thiazoles.  相似文献   

9.
Caffeic acid as a green corrosion inhibitor for mild steel   总被引:1,自引:0,他引:1  
The inhibitor effect of the naturally occurring biological molecule caffeic acid on the corrosion of mild steel in 0.1 M H2SO4 was investigated by weight loss, potentiodynamic polarization, electrochemical impedance and Raman spectroscopy. The different techniques confirmed the adsorption of caffeic acid onto the mild steel surface and consequently the inhibition of the corrosion process. Caffeic acid acts by decreasing the available cathodic reaction area and modifying the activation energy of the anodic reaction. A mechanism is proposed to explain the inhibitory action of the corrosion inhibitor.  相似文献   

10.
Fenugreek seeds extract was examined as a green corrosion inhibitor for Zn in 2.0 mol/L H2SO4 and 2.0 mol/L HCl solutions by mass loss and electrochemical measurements. Scanning electron microscope (SEM) images show that the surface damage is decreased in the presence of the inhibitor. X-rays photoelectron spectroscopy (XPS) analysis was performed to identify the corrosion product, ZnO, and to prove the inhibitor adsorption mechanism. The maximum inhibition efficiency values are 90.7% after 1 h and 66.6% after 0.5 h by 200 mL/L of fenugreek extract in H2SO4 and HCl solutions, respectively. Addition of I ion greatly improves the inhibition efficiency of fenugreek seeds extract for Zn corrosion in HCl due to the synergistic effect. Potentiodynamic polarization and EIS measurements prove the inhibition ability of fenugreek for Zn corrosion in HCl as indicated by the decreased corrosion current density and increased charge transfer resistance values in the presence of fenugreek.  相似文献   

11.
The inhibitor performance of 5‐aminoindole (5‐AI) on mild steel corrosion in 0.5 M HCl was investigated in relation to the inhibitor concentration using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and linear polarization (LPR) methods. The effect of immersion time on the corrosion behavior of mild steel was also studied. The impedance data obtained were fitted and modeled using an equivalent circuit model. The results show that 5‐AI is an effective inhibitor and has an inhibition efficiency of 90% at 1 × 10?2 M additive concentration. The adsorption behavior of 5‐AI was also investigated. For this purpose, the adsorption equilibrium constant (Kads), and the free energy of adsorption (ΔGads) were calculated and discussed. It was found that 5‐AI acts as mixed‐type inhibitor and obeys Langmuir adsorption isotherm with a free energy of adsorption of ?27.71 kJ/mol.  相似文献   

12.
The corrosion inhibition effect of N-aminorhodanine (N-AR) on mild steel (MS) in 0.5 M H2SO4 was studied in both short and long immersion duration using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), chronoamperometry and hydrogen gas evolution. The surface morphology of MS was examined with scanning electron microscopy (SEM) in absence and presence inhibitor. The inhibitor adsorption process on MS surfaces obeys the Langmuir adsorption isotherm. The results show that NAR is a good inhibitor for MS in the acidic medium. The inhibition efficiency obtained from potentiodynamic polarization, EIS and LPR up to 98% is determined.  相似文献   

13.
The corrosion protection of mild steel in a 2.5 M H2SO4 solution by 4,4-dimethyloxazolidine-2-thione (DMT) was studied at different temperatures by measuring changes in open circuit potential (OCP), potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). Corrosion current densities calculated from EIS data were comparable to those obtained from polarisation measurements. Results showed that DMT inhibited mild steel corrosion in a 2.5 M H2SO4 solution and indicated that the inhibition efficiencies increased with the concentration of inhibitor, but decreased proportionally with temperature. Polarisation curves showed that DMT is a mixed-type inhibitor. Changes in impedance parameters suggested the adsorption of DMT on the mild steel surface, leading to the formation of protective films. The DMT adsorption on the mild steel surface followed the Langmuir adsorption isotherm. The kinetic and thermodynamic parameters for dissolution and adsorption were investigated. Comprehensive adsorption (physisorption and chemisorption) of the inhibitor molecules on the mild steel surface was suggested based on the thermodynamic adsorption parameters.  相似文献   

14.
The inhibition effects of 2-amino-5-mercapto-1,3,4-thiadiazole (2A5MT) and 2-mercaptothiazoline (2MT) on mild steel corrosion in 1.0 M H2SO4 were studied with potentiodynamic polarization, linear polarization resistance and electrochemical impedance spectroscopy techniques. It was shown that both 2A5MT and 2MT act as good corrosion inhibitors for mild steel protection. The high inhibition efficiencies were attributed to the simple blocking effect by adsorption of inhibitor molecules on the steel surface. The effects of the presence of extra NH2 group and N atom in 2A5MT on the ability to act as corrosion inhibitors were investigated by theoretical calculations.  相似文献   

15.
The adsorption and inhibition effect of 1,1′-thiocarbonyldiimidazole (TCDI) on the corrosion of mild steel (MS) in 0.5 M HCl solution was studied in both short and long immersion time (120 h) with the help of electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques. For long-time tests, the hydrogen gas evolution (VH2-t) and the change of open circuit potential with immersion time (E ocp-t) were also utilized in addition to the former two techniques. The surface morphology of MS after its exposure to 0.5 M HCl solution with and without 1.0 × 10−2 M TCDI was examined by scanning electron microscopy (SEM). It was demonstrated that the inhibition efficiency of studied inhibitor is concentration depended and increased with TCDI concentration. The higher value of inhibition efficiency was obtained after longer immersion time merely on the basis of strong increase of corrosion rate of mild steel in the blank solution. The high inhibition efficiency was discussed in terms of adsorption of inhibitor molecules and protective film formation on the mild steel surface which was substantiated by SEM micrographs. The adsorption of TCDI on MS was found to obey Langmuir adsorption isotherm.  相似文献   

16.
The inhibition effect of alizarin violet 3B (AV3B) on the corrosion of cold rolled steel (CRS) in 1.0 M HCl and 0.5 M H2SO4 solutions was investigated for the first time by weight loss, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) methods. The results show that AV3B is a good inhibitor, and exhibits more efficient in 1.0 M HCl than 0.5 M H2SO4. The adsorption of AV3B on CRS surface obeys Langmuir adsorption isotherm in both acids. Polarization curves reveal that AV3B acts as a mixed-type inhibitor.  相似文献   

17.
The inhibition effect of triazolyl blue tetrazolium bromide (TBTB) on the corrosion of cold rolled steel (CRS) in 1.0 M HCl and 0.5 M H2SO4 solution was investigated for the first time by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results show that TBTB is a very good inhibitor, and is more efficiency in 1.0 M HCl than 0.5 M H2SO4. The adsorption of TBTB on CRS surface obeys Langmuir adsorption isotherm. Polarization curves reveal that TBTB acts as a mixed-type inhibitor in both acids.  相似文献   

18.
The corrosion behavior of mild steel (MS) in 0.5 M H2SO4 was studied using 3-[(2-hydroxy-benzylidene)-amino]-2-thioxo-thiazolidin-4-one (HBTT) as inhibitor using the conventional potentiodynamic polarization studies, linear polarization studies (LPR), electrochemical impedance spectroscopy studies (EIS). SEM was utilized for surface characterization. The results showed that HBTT posses excellent inhibition effect towards MS corrosion. The inhibitor molecules were first adsorbed on the MS surface and blocking the reaction sites available for acid attack. Adsorption of inhibitor was found to obey Langmuir isotherm and was more chemical than physical.  相似文献   

19.
2,2′ benzothiazolyl disulfide (BTDS) has been synthesised and their inhibiting action on mild steel corrosion in 1 M HCl and 0.5 M H2SO4 at 308 K has been investigated using weight loss, EIS, polarization and SEM study. BTDS showed better efficiency in 0.5 M H2SO4 compared to 1 M HCl. Polarization studies revealed that BTDS is a mixed type inhibitor in both acids predominantly cathodic in 1 M HCl where as predominantly anodic in 0.5 M H2SO4. Thermodynamic parameters i.e. free energy of adsorption, enthalpy, entropy and activation energy were calculated, the values of these parameters showed good interaction.  相似文献   

20.
The inhibitor effect of 2,5-bis(n-pyridyl)-1,3,4-thiadiazoles (n-PTH) on the corrosion of mild steel in 1 M HCl and 0.5 M H2SO4 have been investigated using weight loss and electrochemical impedance spectroscopy. Results obtained reveal that these compounds are mixed-type inhibitors and behave better in 1 M HCl than in 0.5 M H2SO4. The adsorption of n-PTH on the mild steel surface in both acidic media follows a Langmuir isotherm model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号