首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macroscopic torsional fatigue cracks are shown to propagate in shear, in plain tubular specimens, in the M250 maraging steel, for stress ranges from 90% down to 40% of the yield stress. This cannot be explained in terms of microcrack coalescence for the smallest stress range, for which microcracks are scarce. The kinetics and mechanisms of mode II fatigue crack growth are thus investigated, using precracked CTS or tubular specimens. For a high Δ K II , slowly decelerating mode II propagation takes place for a distance that increases with Δ K II before branching occurs. Friction stresses along the crack flanks shield the applied load and explain this deceleration. An inverse analytical procedure is used to derive the effective stress intensity factor, allowance being made for friction effects, from displacement profiles measured from microgrids using a scanning electron microscope. The measured crack growth rates correlate much better with the effective stress intensity factor than with the nominal Δ K II value. The crack paths observed in torsion are discussed in terms of maximum crack velocity.  相似文献   

2.
3.
Abstract— In order to evaluate the threshold value Δ K τth for mode II fatigue crack growth, a new measurement method of mode II fatigue crack growth has been developed. This method uses a conventional closed-loop tension—compression fatigue testing machine without additional loading attachments. Mode II fatigue tests for structural steel and rail steel have been carried out. This method has proved successful and has reproduced mode II fatigue fracture surfaces similar to those found in the spalling of industrial steel-making rolls. The crack length during testing was measured by an AC potential method. The relationships between d a /d N and Δ K τ and AK τth for several materials have been obtained.  相似文献   

4.
This study reports an experimental investigation of fatigue crack propagation in AlMgSi1-T6 aluminium alloy using both constant and variable load amplitudes. Crack closure was monitored in all tests by the compliance technique using a pin microgauge. For the constant amplitude tests four different stress ratios were analysed. The crack closure parameter U was calculated and related with Δ K and the stress ratio, R . The threshold of the stress intensity factor range, Δ K th , was also obtained. Fatigue crack propagation tests with single tensile peak overloads have been performed at constant load amplitude conditions. The observed transient post overload behaviour is discussed in terms of the overload ratio, Δ K baseline level and R . The crack closure parameter U trends are compared with the crack growth transients. Experimental support is given for the hypothesis that crack closure is the main factor determining the transient crack growth behaviour following overloads on AlMgSi1-T6 alloy for plane stress conditions.  相似文献   

5.
The very high cycle fatigue and fatigue crack growth (FCG) behaviours of 2000-MPa ultra-high-strength spring steel with different bainite–martensite duplex microstructures (designated as B-M1 and B-M2) obtained through isothermal quenching and fully martensite (designated as M) for comparison were studied in this paper by using ultrasonic fatigue testing and compact-tension specimens. It was found that for the B-M1 sample with well-controlled thin and uniformly distributed bainite, the fatigue crack threshold Δ K th is higher and FCG rate da / dN at an early stage is lower than those of the M sample. Therefore, the former has rather longer fatigue life at high stress amplitude, though both have almost identical fatigue strength. However, the fatigue properties of bainite–martensite duplex microstructure are significantly deteriorated with the formation of large bainite. Furthermore, like that of the M sample, the S–N curves of the B-M1 and B-M2 samples also display continuous declining type and fish-eye marks were always observed on the fracture surface in the case of internal fractures, which were mainly induced by inclusion. A granular bright facet (GBF) was observed in the vicinity around the inclusion. For each of the three samples, the stress intensity factor range at the boundary of inclusion (Δ Kinc ) decreases with increasing the number of cycles to failure ( N f), while the stress intensity factor range at the front of GBF(Δ K GBF) is almost constant with N f and equals to its Δ K th. This indicates that Δ K GBF might be the threshold value governing the beginning of stable crack propagation.  相似文献   

6.
Abstract— The growth behaviour of small fatigue cracks has been investigated on aluminum alloy 7075-T6 at stress ratios R of 0, −1 and −2. The effects of stress ratio are discussed with special interest in the stage I region of small crack growth. Cracks which initiated at R =−1 and −2, grew by a stage I mechanism up to a certain depth followed by stage II crack growth. The stage I to stage II transition occurred under a constant maximum stress intensity factor which was approximately consistent with the threshold effective stress intensity range, λ K eff,th, for large cracks. At R = 0, on the other hand, stage I crack growth was not observed because of crack initiation at inclusions. Small cracks grew more rapidly than large cracks subjected to the same nominal stress intensity ranges at all the stress ratios, and they grew below the threshold stress intensity range, λ K th, for large cracks. Stage I cracks, in particular, showed much higher growth rates than large cracks and grew even below λ K eff,th. It is suggested that stage II crack growth rates should be characterized in terms of an effective stress intensity range, while a micromechanics approach will be necessary to evaluate stage I crack growth rates.  相似文献   

7.
8.
The effect of microstructure on the fatigue properties of Ti–6Al–2.5Mo–1.5Cr alloy was investigated. The experimental results for both the fatigue crack initiation and propagation behaviour, as well as the dynamic fracture toughness ( K Id ) showed clearly that a lamellar microstructure is superior to two other structures. It was found that, as in the case of steels, the initiation and subsequent growth of cracks in the titanium specimens with a sharp notch may also occur on loading levels below the threshold values of the K factor (Δ K th ) determined for long fatigue cracks. In addition, measurements by interferential-contrast of the plastic zone size on the surface of specimens revealed that the different rate of crack growth at identical values of Δ K in individual structural states can roughly be correlated with the size of the plastic zone. A general relationship between the fatigue crack growth rate and plastic zone size, the modulus of elasticity and the role of crack tip shielding is discussed.  相似文献   

9.
Abstract— Fatigue crack propagation rates and the fatigue threshold of HT80 steel were measured by maintaining the maximum load during the whole period of random loading in order to prevent fatigue crack closure. The random loading pattern involved 62 level block loadings in which the waveform was approximated to the Rayleigh distribution of peaks. The fatigue crack propagation rates under random loading were well predicted from those obtained from constant amplitude loading and assuming a linear cumulative damage law. That is, da/dn = C {Δ K meq−Δ K mth} where the equivalent stress intensity factor, Δ K eq={= n iΔ K mi/d n i}1/ m , where ni = 0 for Δ K i≤Δ K th, or ni = ni for Δ Ki > Δ K th.  相似文献   

10.
Abstract— From fractographic observations of specimens that have failed due to rolling contact fatigue, it has been concluded that the first stage of damage is the formation of mode II fatigue cracks parallel to the contact surface due to the cyclic shear stress component of the contact stress. Although these initial subsurface cracks, in both metals and ceramics, are produced in a direction parallel to the cyclic shear stress, cracks eventually grow in a direction close to the plane of the maximum tensile stress if we apply a simple mode II loading to them. The difference between crack growth in simple mode II loading and crack growth due to rolling contact fatigue is, we suppose, whether or not there is a superimposed compressive stress. Based on this hypothesis, we developed an apparatus to obtain the intrinsic characteristics of mode II fatigue crack growth, and developed a simplified model of subsurface crack growth due to rolling contact fatigue.
Some results in terms of da/dN versus ΔKII relations have been obtained using this apparatus on specimens of steel and aluminum alloys. Fractographs of the mode II fatigue fracture surfaces of the various materials are also provided.  相似文献   

11.
Abstract— —The closure behavior of mode I fatigue cracks under biaxial loading is studied with an elastic-plastic plane stress finite element model. Biaxial stresses are shown to have a significant impact on crack closure behavior at higher maximum stresses. In general, normalized crack opening stresses are highest for equibiaxial loading and lowest for pure shear loading. The differences are apparently negligible for maximum applied stresses less than about 0.4 σ0. Experimental crack growth data are quantitatively consistent with these trends. Correlations of the experimental data with a simple Δ K eff were successful as first-order engineering estimates. Changes in forward and reversed plastic zone sizes with biaxiality are not entirely consistent with trends in crack growth rates.  相似文献   

12.
A multiparameter approach is proposed for the characterization of fatigue crack growth in metallic materials. The model assesses the combined effects of identifiable multiple variables that can contribute to fatigue crack growth. Mathematical expressions are presented for the determination of fatigue crack growth rates, d a /d N , as functions of multiple variables, including stress intensity factor range, Δ K , stress ratio, R , crack closure stress intensity factor, K cl , the maximum stress intensity factor K max , nominal specimen thickness, t , frequency, Ω , and temperature, T . A generalized empirical methodology is proposed for the estimation of fatigue crack growth rates as a function of these variables. The validity of the methodology is then verified by making appropriate comparisons between predicted and measured fatigue crack growth data obtained from experiments on Ti–6Al–4V. The effects of stress ratio and specimen thickness on fatigue crack growth rates are then rationalized by crack closure considerations. The multiparameter model is also shown to provide a good fit to experimental data obtained for HY-80 steel, Inconel 718 polycrystal and Inconel 718 single crystal. Finally, the implications of the results are discussed for the prediction of fatigue crack growth and fatigue life.  相似文献   

13.
Abstract— The opening and closure behaviour of surface, corner and through-thickness cracks in thin notched plates of FeE460 ( K t= 2.5) and A15086 ( K t= 3.4) was experimentally studied. The cracks were initiated and examined under uniaxial fully reversed constant amplitude and two-step loading. Crack opening load values were measured during crack growth in notch sections with a nonuniform stress distribution using small strain gauges glued to the specimen surface, very close to the crack tip. The results represent a comprehensive set of experimental data for crack opening load values in dependence on crack lengths a, c and load level including the influence of overloads and covering all types of cracks. The results indicate uniform relationships between crack opening load levels and all crack types. Crack opening and closure occur at nearly the same strain level, which depends on the applied load level. The crack opening load values measured at large notched specimens differ from those measured at similar smaller specimens because of the different local stress gradients.  相似文献   

14.
Small-crack effects were investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad aluminium alloys. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue and small-crack tests were conducted on single-edge-notch tension (SENT) specimens and large-crack tests were conducted on middle-crack tension specimens under constant-amplitude and Mini-TWIST spectrum loading. A pronounced small-crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite-element and weight-function methods were used to determine stress intensity factors, and to develop equations for surface and corner cracks at the notch in the SENT specimen. (Part I was on the experimental and fracture mechanics analyses and was published in Fatigue Fract. Engng Mater. Struct. 21 , 1289–1306, 1998.) This part focuses on a crack closure and fatigue analysis of the data presented in Part I. A plasticity-induced crack-closure model was used to correlate large-crack growth rate data to develop the baseline effective stress intensity factor range (Δ K eff ) against rate relations for each material, ignoring the large-crack threshold. The model was then used with the Δ K eff rate relation and the stress intensity factors for surface or corner cracks to make fatigue life predictions. The initial defect sizes chosen in the fatigue analyses were similar to those that initiated failure in the specimens. Predicted small-crack growth rates and fatigue lives agreed well with experiments.  相似文献   

15.
R. Hermann  C. Bull 《Strain》1995,31(3):101-106
In this paper it will be shown that crack closure and related crack shielding mechanisms can be studied successfully by applying the shadow optical method, also known as the method of caustics. It is shown that at least one mechanism - plasticity induced crack closure - can be identified and determined from measurements of the transverse diameter of the caustic in the crack tip region. For given fatigue conditions at which crack closure occurs, several experiments have been performed to investigate the effectiveness of the crack opening in a typical fatigue cycle.
Two different methods of closure determination have been used. A comparison is made between one of the most currently used methods of back face strain (BFS) compliance measurement and the shadow optical method (SOM). The underlying features of these two experimental techniques provide the key to finding the extent of the load in the fatigue cycles over which the crack is actually open. This redefines the value of Kmin and the meaning of ΔK. The driving force, ΔKeff is shown to be reduced in or near the fatigue threshold of the alloy, because crack closure is most effective in this part of fatigue loading. The introduction of SOM to fatigue crack closure provides a suitable alternative for finding the effective part of the stress intensity range between the minimum and maximum loads. Conclusions drawn from this work were that in addition to determining that part of the fatigue cycle over which the crack is actually open, the shadow optical method allowed an accurate interpretation of the entire fatigue cycle between Kmax and Kmin  相似文献   

16.
Abstract— Crack opening stress measurements were carried out on 9.6 mm thick specimens of 7075-T6 aluminium alloy with semi-elliptical surface cracks. Measurements were made through a fractographic technique based on a load sequence which can produce distinct striation characteristics on the fracture surface. The crack opening stress S op is deduced from the striation pattern. The variation of S op along the crack periphery and during crack extension was measured. Close to the front surface S op is higher due to plane stress condition. At a large crack depth a strong influence of plasticity in the ligament on S op was found, i.e. S op decreases as the crack extends to breakthrough. The agreement of d a /d N =Δ K eff curves between surface cracks and through cracks data was only found for a limited range of crack depth of the elliptical cracks.  相似文献   

17.
In this paper, compact tension specimens with tilted cracks under monotonic fatigue loading were tested to investigate I + III mixed mode fatigue crack propagation in the material of No. 45 steel with the emphasis on the mode transformation process. It is found that with the crack growth, I + III mixed mode changes to Mode I. Crack mode transformation is governed by the Mode III component and the transformation rate is a function of the relative magnitude of the Mode III stress intensity factor. However, even in the process of the crack mode transformation the fatigue crack propagation is controlled by the Mode I deformation.  相似文献   

18.
The crack closure behaviour of microstructurally small fatigue cracks was numerically simulated by combining the crack-tip slip band model with the plasticity-induced crack closure model. A Stage II crack started to propagate from an initiated Stage I crack. When the plastic zone was constrained by the grain boundary or the adjacent grain with higher yield stresses, the crack opening stress increased with crack extension, and the effective component of the stress range decreased. The crack-tip opening displacement range (Δ CTOD ), first decreased with crack extension due to the development of the residual stretch, then increased until the tip of the plastic zone reached the neighbouring grain boundary. When the plastic zone was blocked by the grain boundary, Δ CTOD began to decrease. The arrest condition of cracks was given by the threshold value of Δ CTOD . At the fatigue limit, the arrest of small cracks takes place just after the Stage II crack crosses the grain boundary when the grain boundary does not act as a barrier. Only when the grain boundary has a blocking strength and the yield stress of adjacent grains is not so high, the arrest of Stage II cracks takes place before the crack reaches the grain boundary. The fatigue limit decreases with the mean stress. The predicted relation between the fatigue limit and the mean stress is close to the modified Goodman relation.  相似文献   

19.
Abstract— Fatigue crack growth after a biaxial overload has been investigated. The crack retardation parameters, N D, and, a D, do not have monotonous dependencies on the biaxial stress ratio, λ, because the shear stress, τIII, acting in the perpendicular direction of the specimen face, influenced the values of these parameters.
It has been found that the plastic zone size parameters, r ab, and Δ, do not increase monotonously with increasing λ ratio. The plastic zone size in the crack growth direction, r ho= a D13, was calculated on the basis of newly proposed relations.
Crack growth after an overload was simulated on the basis of the equivalent mode I stress intensity factor, ICC, invoking a unified kinetic diagram and calculated crack increments, a D13 and a Dc, where Δc is the maximum value of the calculated size of plastic zone. The experimental data for crack growth after an overload had good agreement with the calculated data.  相似文献   

20.
Abstract— The fatigue crack growth behavior of small part-through cracks in 1045 steel and Inconel 718 subjected to biaxial loading has been investigated. Experiments were performed on thin-wall tubular specimens loaded in tension, torsion and combined tension torsion. Crack sizes analyzed ranged from 20 μm to 1 mm and growth rates ranged from 10-7 to 10-4 mm/cycle for 1045 steel and from 10-5 to 10-2 mm/cycle for Inconel. Nucleation and the early growth of cracks occurs on planes of maximum shear strain amplitude for both of these materials even in tensile loading. An equivalent strain based intensity factor was employed to correlate the crack growth rate under mixed mode loading conditions In loading conditions other than torsion, a transition from mode II to mode I was observed for 1045 steel. Principal strains were used to analyze mode I cracks. Cracks in Inconel 718 grow in mode II for the majority of the fatigue life. The maximum shear strain amplitude and the tensile strain normal to the maximum shear strain amplitude plane were used to calculate the strain based intensity factor for mixed mode loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号