首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
主要研究了转炉出钢合成渣洗工艺对45钢纯净度的影响。结果表明:采用合成渣洗工艺后,铸坯中的全氧质量分数有所降低,比未合成渣洗的铸坯全氧质量分数降低2588%;采用合成渣洗工艺后,铸坯中大颗粒夹杂物含量平均由966 mg/10 kg减少为512 mg/10 kg,平均减小了4700%。  相似文献   

2.
冷轧辊电渣钢用合金钢连铸坯属于高碳高铬含钼高合金钢种,是集冶炼、连铸、缓冷处理为一体的高技术含量和高附加值的产品。河钢邯钢研发了采用转炉—精炼—连铸—铸坯缓冷工艺的冷轧辊电渣钢用合金钢连铸坯。采用转炉前期脱磷及钢包顶渣改质的超低磷洁净钢控制技术,基于"恒拉速"提高连浇炉数,通过增加喷铁粉装置及铸坯余热硬度控制法,高碳高合金铸坯质量完全满足使用要求。  相似文献   

3.
王星  胡显堂  危尚好  周冬升  王东  刘敏 《钢铁》2022,57(11):53-63
 转炉具备冶炼低磷钢的生产能力,但生产超低磷9Ni钢,转炉脱磷工艺仍然是主要难点和研究重点。分析了钢水温度、炉渣碱度、FeO和渣量等对转炉脱磷的影响规律,并结合现场工装设备条件,对转炉双联法、三渣法、双渣法3种脱磷模式进行试验对比。双联脱磷工艺半钢温降大、单炉周期长、生产组织难度大,三渣法操作过程复杂、终点磷控制优势不明显。双渣法冶炼周期短,通过优化转炉脱磷工艺,实现了采用双渣法冶炼工艺生产超低磷钢,简化了超低磷钢转炉冶炼流程,提高了生产效率。研究了转炉脱磷主要工艺参数,分析得出采用脱碳氧枪喷头时,供氧流量按脱碳吹炼流量的83.5%控制,可达到良好的脱磷效果并减少铁水碳的烧损;脱磷期半钢碳含量不宜控制过低,半钢碳质量分数为3.0%~3.5%时能保证前期的脱磷效果和脱碳期的热量。脱磷期温度控制在1 300~1 350 ℃,脱磷率较高也有利于炉渣熔化。炉渣碱度为1.8~2.2时,可保证较高的脱磷率和化渣效果。一次倒渣量40%以上,脱碳期终点温度按1 590~1 610 ℃控制,终渣FeO质量分数不小于20%,终渣碱度大于6,转炉终点磷质量分数可降低到0.002%以下。采用下渣检测系统和滑板挡渣操作,严格控制下渣量,出钢采用磷含量低的合金,炉后钢水增磷可控制在小于0.000 5%。通过工业试验,实现了铸机成品磷质量分数小于0.002%。  相似文献   

4.
《炼钢》2012,28(5)
为实现高品质低硫、低氧钢的生产,有效降低钢中T.0、S含量,在考虑转炉下渣、炉渣氧化性以及钢水氧活度的条件下,研究确定了用于低硫、低氧钢冶炼的CaO-Si02-A1:03精炼渣系,并结合转炉下渣改质技术以及LF精炼钢包渣成分控制技术等工艺措施,制定了低硫、低氧钢的钢包渣改质制度。采用该技术生产的27CrMoNbV等圆管坯钢达到了成品w(T.0)≤15×10,w(S)≤0.005%的水平,实现了低硫、低氧钢的生产。  相似文献   

5.
杨俊峰  江腾飞  郝丽霞 《炼钢》2019,35(3):13-16,26
铸造用纯铁SYTB钢需要更低的磷、锰含量,通过对工艺的改进,在不新建、改造设备的前提下,对脱磷、脱锰原理进行分析,结合首钢股份公司迁安钢铁公司210 t转炉脱磷、脱锰能力的评估,建立了生产低磷、低锰SYTB钢种工艺。通过优化废钢比、使用双渣冶炼工艺、降低出钢温度、控制终点氧活度、应用滑板挡渣技术等措施,可完成转炉高效的脱磷、脱锰,100%实现了铸坯成品w(P)≤0.006%、w(Mn)≤0.03%的稳定控制。  相似文献   

6.
检测和分析了80 t顶底复吹转炉-钢包吹氩-连铸流程冶炼Q235A钢(0.14%~0.22%C、0.30%~0.65%Mn)在转炉终点、转炉出钢过程合金化后、钢包吹氩、中间包、钢水和铸坯中的氧、氮和夹杂物含量.结果表明,转炉终点氧含量为350×10-6,加脱氧剂和合金化后,氧含量降低42%,经钢包吹氩,钢中氧含量进一步降低,铸坯中平均氧含量25×10-6;钢中氮含量由转炉终点20×10-6增至铸坯40×10-6;钢包加脱氧剂、合金化后吹氩,钢中可去除约50%夹杂物,使铸坯中夹杂物含量≤45×10-6,一般夹杂尺寸≤10μm,最大尺寸为20μm.  相似文献   

7.
介绍了天钢采用120 t BOF→LF→VD→CC工艺流程生产轴承钢GCr15的实践。在铁水磷含量较高的情况下,通过使用复吹转炉留渣与双渣吹炼法脱磷,实现了转炉终点高碳低磷出钢,C含量平均为0.32%,P含量平均为0.0095%。LF精炼过程中选用高碱度(R=7~9)的Ca O-Si O2-A12O3系精炼渣强化精炼深脱氧、脱硫,在不进行预脱硫处理工艺条件下保证了成品中[S]≤0.005%。VD真空处理后保证软吹氩时间大于20 min,镇静时间不少于10 min,以去除更多的夹杂物。最终铸坯中氧含量平均为6×10-6,夹杂物尺寸较小,铸坯质量良好,实现了轴承钢GCr15稳定生产。  相似文献   

8.
针对C72DA胎圈钢生产初期断丝率高,无法满足拉拔性能要求的现状,分析了产品生产过程中各工序存在的问题,并进行了优化。通过提前控制入炉铁水条件,使用内回螺纹钢筋作为废钢;采用双渣留渣法操作在保证转炉终点磷含量的前提下,提高出钢碳含量;使用低Al低Ti含量的合金料;使用帘线钢专用精炼渣替代石英砂;结晶器由矩管改为方管;对转炉底吹氮氩切换的氮气管道进行打盲板操作;取消电石的使用等一系列优化措施,转炉终点碳含量提高0. 04%,精炼到站碳含量提高0. 07%、钛含量降低0. 001 8%,精炼终渣碱度降低0. 07,铸坯碳偏析指数降低0. 08,盘条的[N]含量降低0. 001 5%,各项指标改善明显,产品质量得到了提升,满足了下游用户的使用要求。  相似文献   

9.
介绍了鞍钢9Ni钢的工艺路线和技术特点。采用转炉双联法、LF/VD双渣法及精炼合成渣技术可使钢中有害元素P+S+N+H+O总和平均降低到0.008 4%;采用电磁搅拌、动态二冷和多点矫直技术减少了连铸坯内部和表面缺陷;采用温度为200~300℃的铸坯缓冷和铸坯修磨工艺保证了轧后钢板表面质量。  相似文献   

10.
重轨钢连铸的质量控制   总被引:3,自引:1,他引:2  
陈永 《钢铁》2004,39(3):23-26
分析了冶炼、精炼、连铸工艺流程生产高质量重轨钢的工艺技术 ,并应用电弧炉冶炼— L F精炼— VD真空脱气—圆坯连铸工艺成功地浇注出 PD3重轨钢连铸圆坯。铸坯表面无裂纹、气孔、结疤、折迭、凹坑和夹渣等缺陷 ,铸坯表面无清理率 >90 % ,铸坯中心疏松≤ 1.0级 ,中心缩孔≤ 1.0级 ,中心碳偏析指数≤ 1.0 8,等轴晶率≥ 5 0 %。由连铸圆坯轧成的重轨 ,质量和性能基本满足时速 2 0 0 km高速铁路用钢轨的要求。  相似文献   

11.
针对260 t转炉冶炼低磷IF钢时存在温度、磷和氧含量很难同时命中的问题,采用了留渣双渣的冶炼工艺,通过合理控制留渣量、一次倒渣温度和一次倒渣时间等措施后,冶炼低磷IF钢转炉终点磷含量低于0.012%,终点氧值降低了0.011 2%,提高了钢水质量。  相似文献   

12.
分析了低硅铝钢浇次首罐浸入水口出现絮流现象的原因,提出了钢水冶炼和浇注期间的预防措施,包括降低转炉终点氧含量,优化出钢过程钢水的脱氧方式;提高LF炉处理期间顶渣的还原性;合理控制钢水中的Ca含量等。采取上述措施之后,低硅铝钢浇次首罐浸入水口的絮流现象减少近50%。  相似文献   

13.
承钢150吨转炉低磷钢冶炼工艺研究   总被引:2,自引:0,他引:2  
利用副枪设备在转炉炼钢过程中连续取样测温的方法对转炉脱磷工艺进行研究,在冶炼低磷钢种时,通过在转炉吹炼中期约6 min时进行倒前期渣操作能有效的控制钢水磷含量;并通过出半钢脱磷、渣洗等手段对转炉脱磷进行有效的补充来实现钢水磷含量的稳定控制。  相似文献   

14.
王杰  曾加庆  杨利彬  汪成义 《钢铁》2022,57(5):55-63
 转炉炼钢过程是一复杂的开放系统,因为受到转炉内多个化学反应同时或交替进行、熔池持续温升与有效控温、熔池自发搅拌强度不均匀性特点、相关杂质元素的高效脱除与如何抑制钢水过氧化、转炉炼钢过程的精细化操作与时序受控等诸多因素的交互影响,在其时空边界内呈现动态起伏和非线性变化特征。要实现由传统追求单一产量指标向追求产量、质量与环保等多目标协同的转变,用传统孤立系统的知识体系不能很好地揭示其运行规律。现代转炉炼钢过程在全流程中的功能定位应聚焦于高效冶炼和稳定获得较洁净的初炼钢水,再与后续钢水精炼技术进行有序组合,满足高拉速、恒拉速多炉连浇的炉-机匹配要求。从转炉炼钢过程在全流程中的功能定位和相关操作的时序匹配等视觉出发,对溅渣护炉、高效供氧、熔池均衡搅拌、钢水成分与温度命中、后搅拌、快速出钢与渣-钢有效分离、转炉煤气高效回收等若干“点技术”展开讨论,阐述上述“点技术”的应用必须追求精细化控制效果,同时要满足转炉炼钢过程时序规划与上下游工序协同运行的要求,确保全流程高质量稳定顺行,不断挖掘转炉炼钢过程的极限潜力。  相似文献   

15.
RH oxygen top- blowing for raising temperature should be avoided to improve the cleaniness of IF steel as far as possible, which made the end point temperature of converter higher and then dephosphorization in converter became difficult. Thermodynamics and dynamics of dephosphorization process in converter were calculated to study the relationship of phosphate partition ratio to compositions of molten steel, slag, temperature in molten steel based on slag- remaining and double slag process. Through changing the first deslagging time and the composition of slag,then serial sampling from molten steel and slag in industrial production experiments, the behavior of phosphorus in molten steel was studied and then the main measures obtaining higher phosphate partition ratio in slag- remaining and double slag process are: small- sized scrap or thin steel sheet should be used to increase FeO content in slag and prevent molten steel temperature increase when oxygen blowing in converter begins. Slag with high phosphorus content should be poured when amount of oxygen blowing reachs 40% of the total; FeO content in slag should be increased to assure the mobility of slag and then reduce rephosphorization from slag to steel when amount of oxygen blowing is greater than 40% and less than 80% of the toal; the end- point slag with 4. 0 basicity and 18 mass%-20 mass% FeO content and molten steel temperature should be controlled.  相似文献   

16.
介绍了应用顶吹氧气转炉冶炼生产06Ni9DR低温压力容器钢的过程。对转炉冶炼温度、钢水镍含量、碳含量、磷含量等工艺参数的控制进行了生产研究。实践表明,采用半钢双联法冶炼,出钢温度1 585~1 635℃、镍含量8.8%~9.3%、终点碳含量小于0.035%时,可以稳定控制06Ni9DR钢的工艺参数,终点磷含量小于0.005%。  相似文献   

17.
抑制回硅是低硅品种钢冶炼的重点和难点,南钢中厚板卷厂通过转炉出钢留氧操作,精炼炉留氧升温,脱氧、脱硫造渣,连铸严格的保护浇注及吹氩塞棒、吹氩浸入式上水口的应用等一系列工艺优化和操作的改进,使整个冶炼过程钢水回硅量稳定控制在200×10-6以内,钢水终点成分完全满足低硅钢要求。  相似文献   

18.
通过分析了水钢100 t顶底复吹转炉炉衬的损坏机理和影响炉渣熔化性能的因素,得出每1%V2O5降低炉渣熔化温度27℃,每增加1%TiO2含量,炉渣半球温度约降低5℃,当炉渣TFe含量在20%以上时,炉渣熔化温度在1 320~1 395℃。通过采取铁水捞渣工艺;建立转炉热平衡操作模式,提高拉碳率;铁水Si在0.6%~0.8%时,采用单渣操作,铁水Si>0.8%时,采用双渣操作;建立转炉最佳炉型及控制措施;优化钢水温度制度和优化脱氧合金化制度,降低出钢温度;在补吹提枪前加入适量焦丁,确保冶炼终点炉渣中FeO保持较低含量,提高溅渣护炉效果等工艺措施,结果使转炉炼钢的耐火材料消耗降到8.75 kg/t钢,转炉炉龄达到29 336炉。  相似文献   

19.
张强  袁宏伟  杨森祥  李清春  陈靓 《钢铁》2013,48(11):32-36
 攀钢提钒炼钢厂采用w([S])为0.06%~0.12%的铁水炼钢,导致低硫钢的生产困难较大,结合攀钢X52NS,L245NCS等低硫钢冶炼的生产实践,分析了“铁水脱硫预处理—转炉—LF钢包精炼—连铸”全流程各工艺环节的硫含量控制技术。通过铁水脱硫预处理后将w([S])控制在0.003%以下,转炉冶炼工位采用含硫较低的辅料造渣以及LF工位控制钢水[O]活度等措施,生产出了w([S])最低为0.002%的低硫钢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号