首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Epithelial tissues provide the first line of defense between an organism and the environment. Disruption of this barrier leads to bacterial invasion and subsequent inflammation. This is precisely the situation existing in the human oral cavity, where tissues are constantly exposed to a variety of microbial challenges that can lead to bacterially induced periodontal diseases, and to infections of the oral mucosa by bacteria, fungi, and viruses. With the recent discoveries of host-derived peptide antibiotics in mammalian mucosal epithelium, a new line of investigation is emerging to test the hypothesis that one class of these peptides, called "beta-defensins", functions to protect the host against microbial pathogenesis at these critical, confrontational sites. In that light, impairment of beta-defensin activity has recently been implicated in chronic bacterial infections in cystic fibrosis patients. The first direct evidence of expression of defensin peptides in the oral mucosa was the identification of a novel epithelial beta-defensin in mammalian tongue. It was shown to be upregulated in inflammation, suggesting that it participates in host defense. It is theorized that epithelial cell-derived antimicrobial peptides function to keep the natural flora of micro-organisms in a steady state in different niches such as the skin, the intestines, the airway, the endocervix, and the mouth. There is now evidence indicating that normal gingival epithelial cells and tissues express two beta-defensins, hBD-1 and the newly described hBD-2. In addition, a cathelin-class antimicrobial peptide, designated LL-37 and found in human neutrophils, is also expressed in skin and gingiva. It is highly likely that these and/or other epithelial antimicrobial peptides play an important role in determining the outcome of the host-pathogen interaction at the oral mucosal barrier, and that they may have important future applications in antibiotic treatment.  相似文献   

2.
Surfaces of higher eukaryotes such as plants, invertebrates, and vertebrates, including humans, are normally covered with microorganisms but usually are not infected by them. The reason, apart from physical barriers, is the production of gene-encoded antimicrobial peptides by epithelial cells. Many novel antimicrobial peptides have been discovered recently in the epithelia of plants, insects, amphibians, and cattle, and, more recently, also in humans. In situ hybridization studies indicate a rather organ-specific expression of the genes for peptide antibiotics, which, due to their antimicrobial spectrum and conditions of expression, may also define the physiologic microflora. Some epithelial antimicrobial peptides are constitutively expressed; others are inducible, either by the presence of microorganisms via as of yet not well characterized elicitor receptors or by endogenous proinflammatory cytokines. Most antimicrobial peptides kill microorganisms by forming pores in the cell membrane, and the sensitivity of some peptide antibiotics towards cholesterol, a major mammalian cell membrane constituent, may indicate why these peptide antibiotics are not toxic for mammalian cells. Thus, it seems to be difficult for microorganisms to acquire resistance, making these peptides very attractive for therapeutic use as antibiotics. The first clinical studies are very promising, and after solving the problems of a large-scale biotechnical synthesis, which is more complicated due to the principally suicidal activity of these peptides, a number of new natural structure-based peptides may be developed. Furthermore, discovery of the inducibility of many antimicrobial peptides may also lead to the development of compounds that elicit epithelial defense reactions by stimulating the synthesis of endogenous peptide antibiotics.  相似文献   

3.
Defensins and other antimicrobial peptides act in the innate host defense of epithelial surfaces. Human beta defensin 1 (hBD-1) has recently been shown to be expressed in airway epithelial cells and so has been implicated as a primary component of antibacterial activity in human lung. We attempted to purify these molecules from bronchoalveolar lavage fluid (BALF). Extraction of BALF on SepPak C-18 cartridges, followed by continuous acid-urea polyacrylamide gel electrophoresis and reverse-phase high-performance liquid chromatography yielded one fraction with antibacterial activity associated with factors of < 6.5 kD. N-terminal amino acid sequencing identified these peptides as human neutrophil defensins (HD) 1 through 3. No hBD-1 was detected. Together with lysozyme, it appears that HD-1 through -3 are the most prominent antimicrobial factors in BALF. The contribution of epithelial defensins such as hBD-1 to antibacterial defense of human airway in vivo remains to be elucidated.  相似文献   

4.
Defensins are mitogenic for epithelial cells and fibroblasts   总被引:1,自引:0,他引:1  
Defensins are a family of structurally homologous peptides contained within phagocytic cells. Although these peptides are best known for their broad spectrum antimicrobial properties, they also inhibit ACTH (corticotropin) stimulated corticosterone production, chemoattract monocytes, and lyse mammalian cells. We now report that these peptides are potent mitogens in vitro in the same concentration range that they display potent antimicrobial activity in vitro. These concentrations are in the same range as those expected to be present in vivo during the wound healing process. All defensins tested were stimulatory for epithelial cells and fibroblasts and acted synergistically with insulin. These are the first data to disclose the strong growth-promoting effects of this unique family of peptides and point to another basic mechanism whereby the macrophage and neutrophil may participate in a variety of trophic, physiologic, and pathologic processes.  相似文献   

5.
We investigated the role in pathogenesis of bacterial resistance to plant antimicrobial peptides. The sapA to sapF (for sensitive to antimicrobial peptides) operon from the pathogenic bacterium Erwinia chrysanthemi has been characterized. It has five open reading frames that are closely related (71% overall amino acid identity) and are in the same order as those of the sapA to sapF operon from Salmonella typhimurium. An E. chrysanthemi sap mutant strain was constructed by marker exchange. This mutant was more sensitive than was the wild type to wheat alpha-thionin and to snakin-1, which is the most abundant antimicrobial peptide from potato tubers. This mutant was also less virulent than was the wild-type strain in potato tubers: lesion area was 37% that of the control, and growth rate was two orders of magnitude lower. These results indicate that the interaction of antimicrobial peptides from the host with the sapA to sapF operon from the pathogen plays a similar role in animal and in plant bacterial pathogenesis.  相似文献   

6.
Antimicrobial peptides are widely distributed in nature, existing in organisms of plants, insects, and vertebrates. It has been approved that antimicrobial peptides have broad spectrum antimicrobial activities, and play a key modulatory role in the innate immune response and tumor inhibiting activity. Due to the special action mechanism, the antimicrobial peptides become a hot field of genetic engineering. In the present paper, the general properties, mechanism of action, application value, existing problems, the latest progress and the expression strategy were discussed.  相似文献   

7.
Due to its location and functions, the tongue is one of the most important anatomic structures in the oral cavity. However, knowledge in regards to its role and implications in oral health and disease is scarce. Moreover, although the dorsum of the tongue seems to harbour one of the most complex microbiological niches in human ecology, the knowledge of the role of tongue flora in health and disease is also very limited. Similarly, the nature of the tongue coating and the factors that influence its development and composition are almost unknown. The interest in the study of the tongue niche has increased in recent years due to its association with oral halitosis and to its role as a suitable reservoir for periodontal pathogens. The structure of the tongue favours a unique and complex bacterial biofilm, in which periodontal pathogens are frequently found. However, little is known about how to control this bacterial niche, and factors affecting tongue coating composition and aspect are not fully understood. Studies available on the influence of mechanical or antimicrobial approaches against tongue biofilm are very limited. Mechanical treatments showed a transient reduction in halitosis-related variables but were limited in time. Different antimicrobials agents have been evaluated: chlorhexidine, chlorine dioxide, metal ions, triclosan, formulations containing essential oils, and hydrogen peroxide. However, most studies were designed as short-term models. Some of these studies demonstrated that the reduction in halitosis-related variables was associated with significant changes in the tongue microflora.  相似文献   

8.
Nitrate-reducing bacteria on rat tongues   总被引:1,自引:0,他引:1  
Nitrite-producing bacteria (NPB) were isolated from tongues of laboratory rats. The most commonly found nitrite-producing organism was Staphylococcus sciuri, followed by Staphylococcus intermedius, Pasteurella spp., and finally Streptococcus spp. Both morphometric quantification of bacteria on tongue sections and enumeration of culturable bacteria (CFU) showed an increase in the density of bacteria towards the posterior tongue. Up to 65% of bacteria were located in the deep clefts on the posterior tongue. The proportion of culturable NPB in the total culturable microbial population increased from 6% (10(5) CFU cm-2) on the anterior tongue to 65% (10(7) CFU cm-2) on the posterior tongue. Different species compositions of NPB were found on different tongue sections with S. intermedius populations decreasing and S. sciuri and Pasteurella populations increasing towards the posterior tongue. Nitrite production was sensitive to oxygen, and significant nitrite production was only detected on the posterior tongue where the majority of bacteria are situated in deep clefts in the tongue surface. This study suggests the importance of bacteria in nitrite production, from nitrate, on the tongue. Nitrite produced on the tongue may subsequently form nitric oxide in the acidic environment of the stomach. Because of the antimicrobial properties of nitric oxide, a key role for nitrate-reducing tongue bacteria in host animal defense against food-borne pathogens in proposed.  相似文献   

9.
PURPOSE: The aim of this work was to identify the integrin subunits present on the cell surface of human corneal epithelial cells. The authors determined to show whether type IV collagen, heparin-binding peptides of type IV collagen (Hep-I, Hep-II, and Hep-III), fibronectin, and GRGDSP promote cell adhesion of human corneal epithelial cells. Type IV collagen and heparin-binding peptides of type IV collagen may be important in corneal epithelial cell adhesion in normal and pathologic conditions and reepithelialization. The authors assess the role of cell surface integrins in mediating cell adhesion to these proteins and peptides. METHODS: Fluorescence-activated cell sorter (FACS) analysis was used to determine the integrin subunits expressed at the cell surface of the cultured human corneal epithelial cells. Cell adhesion was assessed with type IV collagen, heparin-binding peptides of type IV collagen, fibronectin, and GRGDSP: Antibodies to the integrin subunits were used to determine the potential role of integrins in cell adhesion to the above proteins and peptides. RESULTS: FACS analysis identified the beta 1, beta 4, alpha 2, alpha 3, alpha 5, alpha 6, and alpha v integrin subunits on human corneal epithelial cells grown as primary cultures. The anti-beta 1 antibody inhibited cell adhesion to heparin-binding peptides of type IV collagen, type IV collagen, fibronectin, and GRGDSP: Antibodies to the alpha 2 integrin subunit inhibited cell adhesion to the heparin-binding peptides of type IV collagen and slightly inhibited cell adhesion to intact type IV. Antibodies to the alpha 3 integrin subunit exhibited a somewhat lesser effect compared to the anti-alpha 2 integrin antibody. CONCLUSIONS: These data show that the alpha 2 beta 1 integrin of human corneal epithelial cells recognize heparin-binding peptide sequences derived from human type IV collagen. It seems likely that these sequences play an important role in integrin-mediated corneal epithelial cell adhesion. In addition, the alpha 3 beta 1 integrin may mediate similar events.  相似文献   

10.
Members of our group reported recently that neisseria infection of human epithelial cells results in accelerated degradation of the major lysosomal integral membrane protein LAMP1 and that this is due to hydrolysis of this glycoprotein at its immunoglobulin A1 (IgA1)-like hinge by the neisseria type 2 IgA1 protease (L. Lin et al., Mol. Microbiol. 24:1083-1094, 1997). We also reported that the IgA1 protease plays a major role in the ability of the pathogenic neisseriae to survive within epithelial cells and hypothesized that this is due to alteration of lysosomes as a result of protease-mediated LAMP1 degradation. In this study, we tested the hypothesis that neisseria infection leads to multiple changes in lysosomes. Here, we report that neisseria infection also reduces the levels of three other lysosomal markers: LAMP2, lysosomal acid phosphatase (LAP), and CD63. In contrast, neither the epidermal growth factor receptor level nor the beta-tubulin level is affected. A detailed examination of LAMP2 indicated that the reduced LAMP2 levels are not the result of an altered biosynthetic rate or of cleavage by the IgA1 protease. Nevertheless, the protease plays a role in reducing LAMP2 and LAP activity levels, as these are partially restored in cells infected with an iga mutant. We conclude that neisseria infection results in multiple changes to the lysosomes of infected epithelial cells and that these changes are likely an indirect result of IgA1 protease-mediated cleavage of LAMP1.  相似文献   

11.
Most antigenic peptides presented on major histocompatibility complex class I molecules are generated during protein breakdown by proteasomes, whose specificity is altered by interferon-gamma (IFN-gamma). When extended versions of the ovalbumin-derived epitope SIINFEKL are expressed in vivo, the correct C terminus is generated by proteasomal cleavage, but distinct cytosolic protease(s) generate its N terminus. To identify the other protease(s) involved in antigen processing, we incubated soluble extracts of HeLa cells with the 11-mer QLESIINFEKL, which in vivo is processed to the antigenic 8-mer (SIINFEKL) by a proteasome-independent pathway. This 11-mer was converted to the 9-mer by sequential removal of the N-terminal residues, but surprisingly the extract showed little or no endopeptidase or carboxypeptidase activity against this precursor. After treatment of cells with IFN-gamma, this N-terminal trimming was severalfold faster and proceeded to the antigenic 8-mer. The IFN-treated cells also showed greater aminopeptidase activity against many model fluorogenic substrates. Upon extract fractionation, three bestatin-sensitive aminopeptidase peaks were detected. One was induced by IFN-gamma and was identified immunologically as leucine aminopeptidase (LAP). Purified LAP, like the extracts of IFN-gamma-treated cells, processed the 11-mer peptide to SIINFEKL. Thus, IFN-gamma not only promotes proteasomal cleavages that determine the C termini of antigenic peptides, but also can stimulate formation of their N termini by inducing LAP. This enzyme appears to catalyze the trimming of the N terminus of this and presumably other proteasome-derived precursors. Thus, susceptibility to LAP may be an important influence on the generation on immunodominant epitopes.  相似文献   

12.
Lysosomal acid phosphatase (LAP) is a tartrate-sensitive enzyme with ubiquitous expression. Neither the physiological substrates nor the functional significance is known. Mice with a deficiency of LAP generated by targeted disruption of the LAP gene are fertile and develop normally. Microscopic examination of various peripheral organs revealed progredient lysosomal storage in podocytes and tubular epithelial cells of the kidney, with regionally different ultrastructural appearance of the stored material. Within the central nervous system, lysosomal storage was detected to a regionally different extent in microglia, ependymal cells, and astroglia concomitant with the development of a progressive astrogliosis and microglial activation. Whereas behavioral and neuromotor analyses were unable to distinguish between control and deficient mice, approximately 7% of the deficient animals developed generalized seizures. From the age of 6 months onward, conspicuous alterations of bone structure became apparent, resulting in a kyphoscoliotic malformation of the lower thoracic vertebral column. We conclude from these findings that LAP has a unique function in only a subset of cells, where its deficiency causes the storage of a heterogeneously appearing material in lysosomes. The causal relationship of the enzyme defect to the clinical manifestations remains to be determined.  相似文献   

13.
Paneth cells release granules into the lumen of the crypts of Lieberkuhn in the small intestine where their component proteins participate in mucosal immunity. The granules contain a number of proteins associated with roles in host defense, including lysozyme, secretory phospholipase A2, and alpha-defensins, termed cryptdins. Mouse cryptdins 1-6 and recombinant human Paneth cell alpha-defensin HD-5 are potent antimicrobial agents against certain microorganisms. As defensins, they kill microbes by disruption of the target cell membrane. The peptides are coded by individual, two-exon genes that map to homologous regions of chromosome 8 in mice and humans, and the differential expression of certain mouse cryptdin genes provides markers for studies of crypt ontogeny and epithelial cell differentiation and lineage determination. Neutrophil alpha-defensin peptides exhibit numerous biological activities in addition to antimicrobial function including regulation of cell volume, chemotaxis, mitogenicity, and inhibition of natural killer cell activity. When administered apically, mouse cryptdins 2 and 3 can reversibly stimulate human T-84 intestinal epithelial cells to secrete chloride ion, suggesting that alpha-defensins from Paneth cells also may be multifunctional. Thus, cryptdins and varied Paneth cell secretory products seem to contribute both to innate immunity of the crypt lumen and to defining the apical environment of neighboring cells.  相似文献   

14.
Cathelicidins constitute a family of mammalian antimicrobial peptides that are synthesized in the bone marrow as prepropeptides, stored in neutrophil granules as propeptides, and released as active, mature peptides upon neutrophil degranulation. We investigated the developmental expression of two porcine cathelicidins, PR-39 and protegrin. Both cathelicidins were expressed constitutively in the bone marrow of all pigs at all of the ages tested. Peripheral blood neutrophils from young pigs expressed PR-39 and protegrin mRNA, which were not detectable at 42 days of age. At earlier ages, expression of PR-39 mRNA was detected in the kidney and liver and several lymphoid organs, including the thymus, spleen, and mesenteric lymph nodes, but disappeared at 4 weeks of age. These data provide the first evidence of cathelicidin gene expression in peripheral leukocytes and may indicate a role for these antimicrobial peptides in the development of host defense mechanisms.  相似文献   

15.
Transforming growth factor-beta (TGF-beta) is synthesised as an inactive precursor protein; this is cleaved to produce the mature peptide and a latency associated protein (LAP), which remains associated with the mature peptide until activation by LAP degradation. Isoform specific antibodies raised against the LAPs for TGF-beta 2 and -beta 3 were used to determine the myocardial levels of LAP (activatable TGF-beta) and full length precursor (inactive TGF-beta) forms during post-natal development in the rat. TGF-beta 2 was present predominantly as the precursor in 2 day old myocardium. There was an age-dependent shift from precursor protein to LAP between 2 and 28 days. A corresponding increase in the level of mature (activatable) TGF-beta 2 was found. TGF-beta 3 was detected in significant quantities only as LAP. However, a four-fold increase in the expression of TGF-beta 3 LAP was observed between 2 and 28 days. The substantial increases in activatable forms of TGF-beta 2 and -beta 3 that occur in myocardium during the first 28 days of life in the rat support a role for these proteins in post-natal cardiac development.  相似文献   

16.
The antimicrobial activity of T cell-derived cytokines, especially interferon (IFN)-gamma, against intracellular pathogens, such as Chlamydia trachomatis, involves the induction of 3 major biochemical processes: tryptophan catabolism, nitric oxide (NO) induction and intracellular iron (Fe) deprivation. Since the epithelial cell is the natural target of chlamydial infection, the presence of these antimicrobial systems in the cell would suggest that they may be involved in T cell control of intracellular multiplication of Chlamydia. However, the controversy over whether these 3 antimicrobial processes are present in both mice and humans has precluded the assessment of the relative contribution of each of the 3 mechanisms to chlamydial inhibition in the same epithelial cell from either mice or humans. In the present study, we identified a Chlamydia-susceptible human epithelial cell line, RT4, that possesses the 3 antimicrobial systems, and we examined the role of nitric oxide (NO) induction, and deprivation of tryptophan or Fe in cytokine-induced inhibition of chlamydiae. It was found that the 3 antimicrobial systems contributed to cytokine-mediated inhibition of the intracellular growth of Chlamydia. NO induction accounted for approximately 20% of the growth inhibition; tryptophan catabolism contributed approximately 30%; iron deprivation was least effective; but the combination of the 3 systems accounted for greater than 60% of the inhibition observed. These results indicate that immune control of chlamydial growth in human epithelial cells may involve multiple mechanisms that include NO induction, tryptophan catabolism and Fe deprivation.  相似文献   

17.
The airway surface is an important host defense against pulmonary infection. Secretion of proteins with antimicrobial activity from epithelial cells onto the airway surface represents an important component of this innate immune system. Defensins are the best characterized epithelial-derived peptide antibiotics. A member of another family of peptide antibiotics called cathelicidins recently was identified from human bone marrow. We show in this paper that this human peptide named LL-37/hCAP-18 also may play a role in innate immunity of the human lung. In situ hybridization localized high levels of LL-37/hCAP-18 RNA to surface epithelial cells of the conducting airway as well as serous and mucous cells of the submucosal glands. LL-37/hCAP-18 peptide with antimicrobial activity was partially purified from airway surface fluid from human lung and a human bronchial xenograft model. The synthetic peptide LL-37 demonstrated antibiotic activity against a number of Gram-negative and Gram-positive organisms including Pseudomonas aeruginosa; bacterial killing of LL-37 was sensitive to NaCl and was synergistic with lactoferrin and lysozyme. In summary, we show that LL-37/hCAP-18 is a peptide with broad antimicrobial activity that is secreted onto the airway surface from epithelial cells of the human lung.  相似文献   

18.
C-terminal amidation is a post-translational processing step necessary to convey biological activity to a large number of regulatory peptides. In this study we have demonstrated that the peptidyl-glycine alpha-amidating monooxygenase enzyme complex (PAM) responsible for this activity is located in the medullary stellate epithelial cells of the thymus and in cultured epithelial cells bearing a medullary phenotype, using Northern blot, immunocytochemistry, in situ hybridization, and enzyme assays. Immunocytochemical localization revealed a granular pattern in the cytoplasm of the stellate cells, which were also positive for cytokeratins and a B-lymphocyte-associated antigen. The presence of PAM activity in medium conditioned by thymic epithelial cell lines suggests that PAM is a secreted product of these cells. Among the four epithelial cell lines examined, there was a direct correlation between PAM activity and content of oxytocin, an amidated peptide. Taken together, these data provide convincing evidence that thymic epithelial cells have the capacity to generate amidated peptides that may influence T-cell differentiation and suggest that the amidating enzymes could play an important role in the regulation of thymic physiology.  相似文献   

19.
20.
Keratins are intermediate filaments of epithelial cells. Mutations in keratin genes expressed in skin lead to human disorders, including epidermolysis bullosa simplex and epidermolytic hyperkeratosis. We examined the role of keratin 4 (K4) in maintaining the integrity of internal epithelial linings by using gene targeting to generate mice containing a null mutation in the epithelial K4 gene. Homozygous mice that do not express K4 develop a spectrum of phenotypes that affect several organs which express K4 including the esophagus, tongue, and cornea. The cellular phenotypes include basal hyperplasia, lack of maturation, hyperkeratosis, atypical nuclei, perinuclear clearing, and cell degeneration. These results are consistent with the notion that K4 is required for internal epithelial cell integrity. As mutations in K4 in humans lead to a disorder called white sponge nevus, the K4-deficient mice may serve as models for white sponge nevus and for understanding the role of K4 in cellular proliferation and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号