首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Eph receptors, which bind a group of cell-membrane-anchored ligands known as ephrins, represent the largest subfamily of receptor tyrosine kinases (RTKs). They are predominantly expressed in the developing and adult nervous system and are important in contact-mediated axon guidance, axon fasciculation and cell migration. Eph receptors are unique among other RTKs in that they fall into two subclasses with distinct ligand specificities, and in that they can themselves function as ligands to activate bidirectional cell-cell signalling. We report here the crystal structure at 2.9 A resolution of the amino-terminal ligand-binding domain of the EphB2 receptor (also known as Nuk). The domain folds into a compact jellyroll beta-sandwich composed of 11 antiparallel beta-strands. Using structure-based mutagenesis, we have identified an extended loop that is important for ligand binding and class specificity. This loop, which is conserved within but not between Eph RTK subclasses, packs against the concave beta-sandwich surface near positions at which missense mutations cause signalling defects, localizing the ligand-binding region on the surface of the receptor.  相似文献   

2.
The AF-6/afadin protein, which contains a single PDZ domain, forms a peripheral component of cell membranes at specialized sites of cell-cell junctions. To identify potential receptor-binding targets of AF-6 we screened the PDZ domain of AF-6 against a range of COOH-terminal peptides selected from receptors having potential PDZ domain-binding termini. The PDZ domain of AF-6 interacts with a subset of members of the Eph subfamily of RTKs via its COOH terminus both in vitro and in vivo. Cotransfection of a green fluorescent protein-tagged AF-6 fusion protein with full-length Eph receptors into heterologous cells induces a clustering of the Eph receptors and AF-6 at sites of cell-cell contact. Immunohistochemical analysis in the adult rat brain reveals coclustering of AF-6 with Eph receptors at postsynaptic membrane sites of excitatory synapses in the hippocampus. Furthermore, AF-6 is a substrate for a subgroup of Eph receptors and phosphorylation of AF-6 is dependent on a functional kinase domain of the receptor. The physical interaction of endogenous AF-6 with Eph receptors is demonstrated by coimmunoprecipitation from whole rat brain lysates. AF-6 is a candidate for mediating the clustering of Eph receptors at postsynaptic specializations in the adult rat brain.  相似文献   

3.
An early event in signaling by the G-protein-coupled angiotensin II (Ang II) AT1 receptor in vascular smooth muscle cells is the tyrosine phosphorylation and activation of phospholipase Cgamma1 (PLCgamma1). In the present study, we show that stimulation of this event by Ang II in vascular smooth muscle cells is accompanied by binding of PLCgamma1 to the AT1 receptor in an Ang II- and tyrosine phophorylation-dependent manner. The PLCgamma1-AT1 receptor interaction appears to depend on phosphorylation of tyrosine 319 in a YIPP motif in the C-terminal intracellular domain of the AT1 receptor and binding of the phosphorylated receptor by the most C-terminal of two Src homology 2 domains in PLCgamma1. PLCgamma1 thus binds to the same site in the receptor previously identified for binding by the SHP-2 phosphotyrosine phosphatase.JAK2 tyrosine kinase complex. A single site in the C-terminal tail of the AT1 receptor can, therefore, be bound in a ligand-dependent manner by two different downstream effector proteins. These data demonstrate that G-protein-coupled receptors can physically associate with intracellular proteins other than G proteins, creating membrane-delimited signal transduction complexes similar to those observed for classic growth factor receptors.  相似文献   

4.
The Eph family of receptor protein-tyrosine kinases (RTKs) have recently been implicated in patterning and wiring events in the developing nervous system. Eph receptors are unique among other RTKs in that they fall into two large subclasses that show distinct ligand specificities and for the fact that they themselves might function as 'ligands', thereby activating bidirectional signaling. To gain insight into the mechanisms of ligand-receptor interaction, we have mapped the ligand binding domain in Eph receptors. By using a series of deletion and domain substitution mutants, we now report that an N-terminal globular domain of the Nuk/Cek5 receptor is the ligand binding domain of the transmembrane ligand Lerk2. Using focus formation assays, we show that the Cek5 globular domain is sufficient to confer Lerk2-dependent transforming activity on the Cek9 orphan receptor. Extending our binding studies to other members of both subclasses of receptors, it became apparent that the same domain is used for binding of both transmembrane and glycosylphosphatidyl-anchored ligands. Our studies have determined the first structural elements involved in ligand-receptor interaction and will allow more fine-tuned genetic experiments to elucidate the mechanism of action of these important guidance molecules.  相似文献   

5.
Fas (APO-1/CD95), which is a member of the tumor necrosis factor receptor superfamily, is a cell surface receptor that induces apoptosis. A protein tyrosine phosphatase, Fas-associated phosphatase-1 (FAP-1), that was previously identified as a Fas binding protein interacts with the C-terminal 15 amino acids of the regulatory domain of the Fas receptor. To identify the minimal region of the Fas C-terminal necessary for binding to FAP-1, we employed an in vitro inhibition assay of Fas/FAP-1 binding using a series of synthetic peptides as well as a screen of random peptide libraries by the yeast two-hybrid system. The results showed that the C-terminal three amino acids (SLV) of human Fas were necessary and sufficient for its interaction with the third PDZ (GLGF) domain of FAP-1. Furthermore, the direct cytoplasmic microinjection of this tripeptide (Ac-SLV) resulted in the induction of Fas-mediated apoptosis in a colon cancer cell line that expresses both Fas and FAP-1. Since t(S/T)X(V/L/I) motifs in the C termini of several other receptors have been shown to interact with PDZ domain in signal transducing molecules, this may represent a general motif for protein-protein interactions with important biological functions.  相似文献   

6.
During development of the vertebrate hindbrain regulatory gene expression is confined to precise segmental domains. Studies of cell lineage and gene expression suggest that establishment of these domains may involve a dynamic regulation of cell identity and restriction of cell movement between segments. We have taken a dominant negative approach to interfere with the function of Sek-1, a member of the Eph-related receptor tyrosine kinase family expressed in rhombomeres r3 and r5. In Xenopus and zebrafish embryos expressing truncated Sek-1, lacking kinase sequences, expression of r3/r5 markers occurs in adjacent even-numbered rhombomeres, in domains contiguous with r3 or r5. This disruption is rescued by full-length Sek-1, indicating a requirement for the kinase domain in the segmental restriction of gene expression. These data suggest that Sek-1, perhaps with other Eph-related receptors, is required for interactions that regulate the segmental identity or movement of cells.  相似文献   

7.
The mechanism of kainate receptor targeting and clustering is still unresolved. Here, we demonstrate that members of the SAP90/PSD-95 family colocalize and associate with kainate receptors. SAP90 and SAP102 coimmunoprecipitate with both KA2 and GluR6, but only SAP97 coimmunoprecipitates with GluR6. Similar to NMDA receptors, GluR6 clustering is mediated by the interaction of its C-terminal amino acid sequence, ETMA, with the PDZ1 domain of SAP90. In contrast, the KA2 C-terminal region binds to, and is clustered by, the SH3 and GK domains of SAP90. Finally, we show that SAP90 coexpressed with GluR6 or GluR6/KA2 receptors alters receptor function by reducing desensitization. These studies suggest that the organization and electrophysiological properties of synaptic kainate receptors are modified by association with members of the SAP90/PSD-95 family.  相似文献   

8.
Caveolin, a 21-24-kDa integral membrane protein, is a principal component of caveolae membranes. We and others have suggested that caveolin functions as a scaffolding protein to organize and concentrate certain caveolin-interacting signaling molecules within caveolae membranes. In this regard, it has been shown that a 20-amino acid membrane-proximal region of the cytosolic NH2-terminal domain of caveolin is sufficient to mediate the interaction of caveolin with signaling proteins, namely G-proteins, Src-like kinases, eNOS, and H-Ras. This caveolin-derived protein domain has been termed the caveolin-scaffolding domain. Binding of the caveolin-scaffolding domain functionally suppresses the activity of G-protein alpha subunits, eNOS, and Src-like kinases, suggesting that caveolin binding may also play a negative regulatory role in signal transduction. Here, we report the direct interaction of caveolin with a growth factor receptor, EGF-R, a known caveolae-associated receptor tyrosine kinase. Two consensus caveolin binding motifs have been previously defined using phage display technology. One of these motifs is present within the conserved kinase domains of most known receptor tyrosine kinases (termed region IX). We now show that this caveolin binding motif within the kinase domain of the EGF-R can mediate the interaction of the EGF-R with the scaffolding domains of caveolins 1 and 3 but not with caveolin 2. In addition, the scaffolding domains of caveolins 1 and 3 both functionally inhibit the autophosphorylation of the EGF-R kinase in vitro. Importantly, this caveolin-mediated inhibition of the EGF-R kinase could be prevented by the addition of an EGF-R-derived peptide that (i) contains a well conserved caveolin binding motif and (ii) is located within the kinase domain of the EGF-R and most known receptor tyrosine kinases. Similar results were obtained with protein kinase C, a serine/threonine kinase, suggesting that caveolin may function as a general kinase inhibitor. The implications of our results are discussed within the context of caveolae-mediated signal transduction. In this regard, caveolae-coupled signaling might explain how linear signaling pathways can branch and interconnect extensively, forming a signaling module or network.  相似文献   

9.
CD28 provides a costimulatory signal that results in optimal activation of T cells. The signal transduction pathways necessary for CD28-mediated costimulation are presently unknown. Engagement of CD28 leads to its tyrosine phosphorylation and subsequent binding to Src homology 2 (SH2)-containing proteins including the p85 subunit of phosphatidylinositol 3'-kinase (PI3K); however, the contribution of PI3K to CD28-dependent costimulation remains controversial. Here we show that CD28 is capable of binding the Src homology 3 (SH3) domains of several proteins, including Grb2. The interaction between Grb2 and CD28 is mediated by the binding of Grb2-SH3 domains to the C-terminal diproline motif present in the cytoplasmic domain of CD28. While the affinity of the C-terminal SH3 domain of Grb2 for CD28 is greater than that of the N-terminal SH3 domain, optimal binding requires both SH3 domains. Ligation of CD28, but not tyrosine-phosphorylation, is required for the SH3-mediated binding of Grb2 to CD28. We propose a model whereby the association of Grb2 with CD28 occurs via an inducible SH3-mediated interaction and leads to the recruitment of tyrosine-phosphorylated proteins such as p52(shc) bound to the SH2 domain of Grb2. The inducible interaction of Grb2 to the C-terminal region of CD28 may form the basis for PI3K-independent signaling through CD28.  相似文献   

10.
Several dozen signaling proteins are now known to contain 80-100 residue repeats, called PDZ (or DHR or GLGF) domains, several of which interact with the C-terminal tetrapeptide motifs X-Ser/Thr-X-Val-COO- of ion channels and/or receptors. PDZ domains have previously been noted only in mammals, flies, and worms, suggesting that the primordial PDZ domain arose relatively late in eukaryotic evolution. Here, techniques of sequence analysis-including local alignment, profile, and motif database searches-indicate that PDZ domain homologues are present in yeast, plants, and bacteria. It is suggested that two PDZ domains occur in bacterial high-temperature requirement A (htrA) and one in tail-specific protease (tsp) homologues, and that a yeast htrA homologue contains four PDZ domains. Sequence comparisons suggest that the spread of PDZ domains in these diverse organisms may have occurred via horizontal gene transfer. The known affinity of Escherichia coli tsp for C-terminal polypeptides is proposed to be mediated by its PDZ-like domain, in a similar manner to the binding of C-terminal polypeptides by animal PDZ domains.  相似文献   

11.
Insulin receptor substrate-1 (IRS-1) and Shc are two proteins implicated in intracellular signal transduction. They are activated by an increasing number of extracellular signals, mediated by receptor tyrosine kinases, cytokine receptors, and G protein-coupled receptors. In this study we demonstrate that Shc interacts directly with IRS-1, using the yeast two-hybrid system and an in vitro interaction assay. Deletion analysis of the proteins to map the domains implicated in this interaction shows that the phosphotyrosine binding domain of Shc binds to the region of IRS-1 comprising amino acids 583-661. An in vitro association assay, performed with or without activation of tyrosine kinases, gives evidence that tyrosine phosphorylation of IRS-1 and Shc drastically improves the interaction. Site-directed mutagenesis on IRS-1 583-693 shows that the asparagine, but not the tyrosine residue of the N625GDY628motif domain, is implicated in the IRS-1-Shc-phosphotyrosine binding interaction. Mutation of another tyrosine residue, Tyr608, also induced a 40% decrease in the interaction. This study, describing a phosphotyrosine-dependent interaction between IRS-1 and Shc, suggests that this association might be important in signal transduction.  相似文献   

12.
Plasma membrane Ca2+ ATPases are P-type pumps important for intracellular Ca2+ homeostasis. The extreme C termini of alternatively spliced "b"-type Ca2+ pump isoforms resemble those of K+ channels and N-methyl-D-aspartate receptor subunits that interact with channel-clustering proteins of the membrane-associated guanylate kinase (MAGUK) family via PDZ domains. Yeast two-hybrid assays demonstrated strong interaction of Ca2+ pump 4b with the PDZ1 + 2 domains of several mammalian MAGUKs. Pump 4b and PSD-95 could be co-immunoprecipitated from COS-7 cells overexpressing these proteins. Surface plasmon resonance revealed that a C-terminal pump 4b peptide interacted with the PDZ1 + 2 domains of hDlg with nanomolar affinity (KD = 1.6 nM), whereas binding to PDZ3 was in the micromolar range (KD = 1.2 microM). In contrast, the corresponding C-terminal peptide of Ca2+ pump 2b interacted weakly with PDZ1 + 2 and not at all with PDZ3 of hDlg. Ca2+ pump 4b bound strongly to PDZ1 + 2 + 3 of hDlg on filter assays, whereas isoform 2b bound weakly, and the splice variants 2a and 4a failed to bind. Together, these data demonstrate a direct physical binding of Ca2+ pump isoform 4b to MAGUKs via their PDZ domains and reveal a novel role of alternative splicing within the family of plasma membrane Ca2+ pumps. Alternative splicing may dictate their specific interaction with PDZ domain-containing proteins, potentially influencing their localization and incorporation into functional multiprotein complexes at the plasma membrane.  相似文献   

13.
Cyclic AMP is a major second messenger that inhibits the brush border Na+/H+ exchanger NHE3. We have previously shown that either of two related regulatory proteins, E3KARP or NHERF, is necessary for the cAMP-dependent inhibition of NHE3. In the present study, we characterized the interaction between NHE3 and E3KARP using in vitro binding assays. We found that NHE3 directly binds to E3KARP and that the entirety of the second PSD-95/Dlg/ZO-1 (PDZ) domain plus the carboxyl-terminal domain of E3KARP are required to bind NHE3. E3KARP binds an internal region within the NHE3 C-terminal cytoplasmic tail, defining a new mode of PDZ domain interaction. Analyses of cellular distribution of NHE3 and E3KARP expressed in PS120 fibroblasts show that NHE3 and E3KARP are co-localized on the plasma membrane, but not in a distinct juxtanuclear compartment in which NHE3 is predominantly expressed. The distributions of NHE3 and E3KARP were not affected by treatment with 8-bromo-cAMP. As shown earlier for the human homolog of NHERF, we also found that the cytoskeletal protein ezrin binds to the carboxyl-terminal domain of E3KARP. These results are consistent with the possibility that E3KARP and NHERF may function as scaffold proteins that bind to both NHE3 and ezrin. Since ezrin is a protein kinase A anchoring protein, we suggest that the scaffolding function of E3KARP binding to both ezrin and NHE3 localizes cAMP-dependent protein kinase in the vicinity of the cytoplasmic domain of NHE3, which is phosphorylated by elevated cAMP.  相似文献   

14.
We have investigated the capacity of N- and C-terminally truncated and chimeric human (h) IgE-derived peptides to inhibit the binding of 125I-labeled hIgE, and to engage cell lines expressing high and low affinity receptors (Fc-epsilon-RI/II). The peptide sequence Pro343-Ser353 of the hC-epsilon-3 domain is common to all h-epsilon-chain peptides that recognize hFc-epsilon-RI. This region in IgE is homologous to the A loop in C-gamma-2 that engages the rat neonatal IgG receptor. Optimum Fc-epsilon-RI occupancy by hIgE occurs at pH 6.4, with a second peak at 7.4. N- or C-terminal truncation has little effect on the association rate of the ligands with this receptor. Dissociation markedly increases following C-terminal deletion, and hFc-epsilon-RI occupancy at pH 6.4 is diminished. His residue(s) in the C-terminal region of the epsilon-chain may thus contribute to the high affinity of interaction. Grafting the homologus rat epsilon-chain sequence into hIgE maintains hFc-epsilon-RI interaction without conferring binding to rat Fc-epsilon-RI. hFc-epsilon-RII interaction is lost, suggesting that these residues also contribute to hFc-epsilon RII binding. h-epsilon-chain peptides comprising only this sequence do not block hIgE/hFc-epsilon-RI interaction or engage the receptor. Therefore, sequences N- or C-terminal to this core peptide provide structures necessary for receptor recognition.  相似文献   

15.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) controls the production, maturation, and function of cells in multiple hematopoietic lineages. These effects are mediated by a cell-surface receptor (GM-R) composed of alpha and beta subunits, each containing 378 and 881 amino acids, respectively. Whereas the alpha subunit exists as several isoforms that bind GM-CSF with low affinity, the beta common subunit (beta c) does not bind GM-CSF itself, but acts as a high-affinity converter for GM-CSF, interleukin-3 (IL-3), and IL-5 receptor alpha subunits. The cytoplasmic region of GM-R alpha consists of a membrane-proximal conserved region shared by the alpha 1 and alpha 2 isoforms and a C-terminal variable region that is divergent between alpha 1 and alpha 2. The cytoplasmic region of beta c contains membrane proximal serine and acidic domains. To investigate the amino acid sequences that influence signal transduction by this receptor complex, we constructed a series of cytoplasmic truncation mutants of the alpha 2 and beta subunits. To study these truncations, we stably transfected the IL-3-dependent murine cell line Ba/F3 with wild-type or mutant cDNAs. We found that the wild-type and mutant alpha subunits conferred similar low-affinity binding sites for human GM-CSF to Ba/F3, and the wild-type or mutant beta subunit converted some of these sites to high-affinity; the cytoplasmic domain of beta was unnecessary for this high-affinity conversion. Proliferation assays showed that the membrane-proximal conserved region of GM-R alpha and the serine-acidic domain of beta c are required for both cell proliferation and ligand-dependent phosphorylation of a 93-kD cytoplasmic protein. We suggest that these regions may represent an important signal transduction motif present in several cytokine receptors.  相似文献   

16.
17.
Screening of a yeast two-hybrid library for proteins that interact with the kinase domain of an S-locus receptor kinase (SRK) resulted in the isolation of a plant protein called ARC1 (Arm Repeat Containing). This interaction was mediated by the C-terminal region of ARC1 in which five arm repeat units were identified. Using the yeast two-hybrid system and in vitro binding assays, ARC1 was found to interact specifically with the kinase domains from SRK-910 and SRK-A14 but failed to interact with kinase domains from two different Arabidopsis receptor-like kinases. In addition, treatment with a protein phosphatase or the use of a kinase-inactive mutant reduced or abolished the binding of ARC1 to the SRK-910 kinase domain, indicating that the interaction was phosphorylation dependent. Lastly, RNA blot analysis revealed that the expression of ARC1 is restricted to the stigma, the site of the self-incompatibility response.  相似文献   

18.
19.
A phage-displayed combinatorial peptide library was used to define the specificity of one of the three Src homology 3 (SH3) domains in a novel cytoskeletal protein, named CAP, for Cbl Associated Protein. The C-terminal SH3 domain was used to affinity select peptides with the consensus, PXPPXRXSSL, from a library of X6PXXPX6 peptides. Peptide sequences resembling this consensus were identified in two signal transduction proteins, c-Cbl and son-on-sevenless (Sos), previously shown to interact with the C-terminal SH3 domain of CAP. Genetic fusion of 16 and 14 amino acid segments of c-Cbl and Sos, respectively, to bacterial alkaline phosphatase confirmed that these segments were potential ligand sites for the C-terminal SH3 domain of CAP. Alanine-scanning mutagenesis of the c-Cbl peptide ligand confirmed that most of the residues, which were conserved among the peptide ligands selected from the combinatorial peptide library, contributed to binding to the C-terminal SH3 domain of CAP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号