首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Adenosine is a putative neuroprotectant in ischemia, but its role after traumatic brain injury (TBI) is not clear. Metabolites of adenosine, particularly inosine and hypoxanthine, are markers of ischemia and energy failure. Adenosine triphosphate (ATP) breakdown early after injury and metabolism of cyclic adenosine monophosphate (cAMP) are potential sources of adenosine. Further delineation of the magnitude, location, time course, and source of production of adenosine after TBI is needed. We measured adenosine, inosine, and hypoxanthine in brain interstitial fluid after controlled cortical impact (CCI) in the rat. Rats (n = 15) were prepared for TBI induced by CCI. A microdialysis probe was placed in the cortex, and samples were collected every 10 min. After 3 h of equilibration, the catheter was removed, CCI was performed (4 m/sec, depth 2.5 mm), and the catheter was replaced. In the shams, the catheter was removed and replaced without CCI. The injury group included rats (n = 10) subjected to CCI. Within the injury group, the microdialysis probe was placed in the center of the eventual contusion (center, n = 5) or in the penumbral region (penumbra, n = 5). Purine metabolites were measured using ultraviolet-based high-pressure liquid chromatography. Adenosine, inosine, and hypoxanthine were dramatically increased after injury (61-fold, 37-fold, and 16-fold, respectively sham, all p < 0.05, two-way analysis of variance for repeated measures). No changes in cAMP were observed (p = 0.62 vs. sham). Adenosine peaked in the first 20 min and returned to near baseline 40 min, whereas inosine and hypoxanthine peaked at 30 min and remained increased for 40 min after CCI. Interstitial brain adenosine, inosine, and hypoxanthine were increased early after CCI in rats in the contusion and penumbra. ATP breakdown is a potential source of adenosine in this early period while metabolism of cAMP does not appear to play a role. Confirmation of these data in humans may suggest new strategies targeting this important metabolic pathway.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
The receptor-binding factor (RBF) for the avian oviduct progesterone (Pg) receptor (PR) has previously been shown to be a unique 10-kDa nuclear matrix protein that generates high affinity PR-binding sites on avian DNA. This paper describes the use of Southwestern blot and DNA gel shift analyses with RBF protein to identify a minimal 54-base pair RBF-binding element in the matrix-associated region (MAR) of the Pg-regulated c-myc gene promoter. This element contains a 5'-GC-rich domain and a 3'-AT-rich domain, the latter of which has a homopurine/homopyrimidine structure. The gel shift assays required the generation of an RBF-maltose fusion protein (RBF-MBP), which specifically binds this element and is supershifted when the anti-RBF polyclonal antibody is added. Computer analysis of the full-length amino acid sequence for RBF predicts a DNA-binding motif involving a beta-sheet structure at the N-terminal domain. Southern blot analyses using nuclear matrix DNA suggests that there are dual MAR sites in the c-myc promoter, which flank an intervening domain containing the RBF element. The co-transfection of this MAR sequence, containing the RBF element and cloned into a luciferase reporter vector, together with an RBF expression vector construct, into steroid treated human MCF-7 cells, results in a decrease of the c-myc promoter activity relative to control transfections containing only the parent vector of the RBF expression construct. These data suggest that a unique chromatin/nuclear matrix structure, composed of the RBF-DNA element complex which is flanked by nuclear matrix attachment sites, serves to bind the PR and repress the c-myc promoter.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号