首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Catalysis Reviews》2013,55(1):123-246
ABSTRACT

Conventional and emerging processes that require the application of multiphase reactors are reviewed with an emphasis on catalytic processes. In the past, catalyst discovery and development preceded and drove the selection and development of an appropriate multiphase reactor type. This sequential approach is increasingly being replaced by a parallel approach to catalyst and reactor selection. Either approach requires quantitative models for the flow patterns, phase contacting, and transport in various multiphase reactor types. This review focuses on these physical parameters for various multiphase reactors. First, fixed-bed reactors are reviewed for gas-phase catalyzed processes with an emphasis on unsteady state operation. Fixed-bed reactors with two-phase flow are treated next. The similarities and differences are outlined between trickle beds with cocurrent gas–liquid downflow, trickle-beds with countercurrent gas–liquid flow, and packed-bubble columns where gas and liquid are contacted in cocurrent upflow. The advantages of cyclic operation are also outlined. This is followed by a discussion on conventional reactors with mobile catalysts, such as slurry bubble columns, ebullated beds, and agitated reactors. Several unconventional reactor types are reviewed also, such as monoliths for two-phase flow processing, membrane reactors, reactors with circulating solids, rotating packed beds, catalytic distillation, and moving-bed chromatographic reactors.

Numerous references are cited throughout the review, and the state-of-the-art is also summarized. Measurements and experimental characterization methods for multiphase systems as well as the role of computational fluid dynamics are not covered in a comprehensive manner due to other recent reviews in these areas. While it is evident that numerous studies have been conducted to elucidate the behavior of multiphase reactors, a key conclusion is that the current level of understanding can be improved further by the increased use of fundamentals.  相似文献   

2.
The effect of slow ON-OFF liquid flow modulation on the oxidation of aqueous solutions of ethanol using a 0.5% Pd/Al2O3 commercial egg-shell catalyst was investigated in a laboratory trickle bed reactor (TBR). In this mode of operation, the catalyst was cyclically exposed to oxidative and reductive environments.The study was carried out under different gas and liquid flow rates, cycle periods and splits. Cycling results have been compared with the steady-state experiments performed at the corresponding average liquid flow rate. Significant improvements over the continuous operation were obtained when the catalyst was exposed to a short surplus of oxygen (to minimize deactivation by overoxidation in the kinetic regime) after a longer time of working in the mass transfer limited regime. According to the results presented here, it is recommended to work with high liquid flow rates and moderate gas flow rates to ensure complete wetting of the catalyst during the ON cycle and to minimize the overoxidation process during the OFF cycle.  相似文献   

3.
A three-dimensional simulation of a dilute phase riser reactor (solid mass flux: ) is performed using a novel density based solution algorithm. The model equations consisting of continuity, momentum, energy and species balances for both phases, are formulated following the Eulerian-Eulerian approach. The kinetic theory of granular flow is applied. The gas phase turbulence is accounted for via a k-ε model. An extra transport equation describes the correlation between the gas and solid phase fluctuating motion. The solution algorithm allows a simultaneous integration of all the model equations in contrast to the sequential multi-loop solution in the conventional pressure based algorithms, used so far in riser simulations. The simulations show an unsteady behaviour of the flow, but a core-annulus flow pattern emerges on a time-averaged basis. The abrupt nature of the T type outlets causes a significant recirculation of gas and solid from the top of the riser. The flow near the outlets is highly non-symmetric and has a three-dimensional character. A significant decrease of the gas phase turbulence and particle granular temperature across the riser length is attributed to the presence of small particles, which is qualitatively consistent with the experimental data from literature.  相似文献   

4.
The rapid development of microfabrication techniques creates new opportunities for applications of microchannel reactor technology in chemical reaction engineering. The extremely large surface-to-volume ratio and the short transport path in microchannels enhance heat and mass transfer dramatically, and hence provide many potential opportunities in chemical process development and intensification. Multiphase reactions involving gas/liquid reactants with a solid as a catalyst are ubiquitous in chemical and pharmaceutical industries. The hydrodynamics of the flow affects the reactor performance significantly; therefore it plays a prominent role in reactor design. For gas/liquid two-phase flow in a microchannel, the Taylor slug flow regime is the most commonly encountered flow pattern. The present study deals with the numerical simulation of the Taylor flow in a microchannel, particularly on gas and liquid slugs. A T-junction empty microchannel with varying cross-sectional width (0.25, 0.5, 0.75, 1, 2 and 3 mm) served as the model micro-reactor, and a finite volume based commercial computational fluid dynamics (CFD) package, FLUENT, was adopted for the numerical simulation. The gas and liquid slug lengths at various operating and fluid conditions were obtained and found to be in good agreement with the literature data. Several correlations in the T-junction microchannel were developed based on the simulation results. The slug flows for other geometries and inlet conditions were also studied.  相似文献   

5.
Knowledge about the gas and particle dynamics in spouted beds is important in the evaluation of particle circulation rates and the efficiency of gas-solid contacts. In this work, the mechanism of transition from a static bed to a spouted bed was numerically simulated using a Eulerian multiphase model. This model was applied to two distinct spouted bed geometries: a conventional device and a spouted bed with draft tube. The radial voidage and particle velocity profiles along the longitudinal position in the annular and spout regions were simulated for the geometries under study. The characteristic simulated curves were congruous with the experimental data.  相似文献   

6.
Knowledge about the gas and particle dynamics in spouted beds is important in the evaluation of particle circulation rates and the efficiency of gas-solid contacts. In this work, the mechanism of transition from a static bed to a spouted bed was numerically simulated using a Eulerian multiphase model. This model was applied to two distinct spouted bed geometries: a conventional device and a spouted bed with draft tube. The radial voidage and particle velocity profiles along the longitudinal position in the annular and spout regions were simulated for the geometries under study. The characteristic simulated curves were congruous with the experimental data.  相似文献   

7.
Two-dimensional axisymmetric Eulerian/Eulerian simulations of two-phase (gas/liquid) transient flow were performed using a multiphase flow algorithm based on the finite-volume method. These numerical simulations cover laboratory scale bubble columns of different diameters, operated over a range of superficial gas velocities ranging from the bubbly to the churn turbulent regime. The bubble population balance equation (BPBE) is implemented in the two-fluid model that accounts for the drag force and employs the modified k-ε turbulence model in the liquid phase. Several available bubble breakup and coalescence closures are tested. Quantitative agreements between the experimental data and simulations are obtained for the time-averaged axial liquid velocity profiles, as well as for the kinetic energy profiles, only when model predicted breakup rate is increased by a factor of ten to match the coalescence rate. The calculated time-averaged gas holdup profiles deviate in shape from the measured ones and suggest that full three-dimensional simulation is needed. Implementation of BPBE leads to better agreement with data, especially in the churn-turbulent flow regime, compared to the simulation based on an estimated constant mean bubble diameter. Differences in the predicted interfacial area density, with and without BPBE implementation, are significant. The choice of bubble breakup and coalescence closure does not have a significant impact on the simulated results as long as the magnitude of breakup is increased tenfold.  相似文献   

8.
The characteristics of mechanical dispersion of tracer and liquid are analyzed using CFD modeling and experimental results from the literature. The most significant differences are underlined and their impact is discussed further. When compared to uniform liquid distribution, the more complicated flow conditions in liquid source measurements are considered to have a significant effect on result analysis and should be paid more attention to. Modeling of mechanical dispersion of liquid using CFD is discussed. Finally, liquid source dispersion cases are simulated and the results are compared to the experimental liquid as well as tracer dispersion results.  相似文献   

9.
The fluid catalytic cracking (FCC) technology is one of the pillars of the modern petroleum industry which converts the crude oil fractions into many commodity fuels and platform chemicals, such as gasoline. Although the FCC field is quite mature, the research scope is still enormous due to changing FCC feedstock, gradual shifts in market demands and evolved unit operations. In this review, we have described the current status of FCC technology, such as variation in the present day feedstocks and catalysts, and particularly, great attention is paid to the effects of various contaminants of the FCC catalysts of which the latter part has not been sufficiently documented and analyzed in the literature yet. Deposition of various contaminants on cracking catalyst during FCC process, including metals, sulfur, nitrogen and coke originated from feedstocks or generated during FCC reaction constitutes a source of concern to the petroleum refiners from both economic and technological perspectives. It causes not only undesirable effects on the catalysts themselves, but also reduction in catalytic activity and changes in product distribution of the FCC reactions, translating into economic losses. The metal contaminants (vanadium (V), nickel (Ni), iron (Fe) and sodium (Na)) have the most adverse effects that can seriously influence the catalyst structure and performance. Although nitrogen and sulfur are considered less harmful compared to the metal contaminants, it is shown that pore blockage by the coking effect of sulfur and acid sites neutralization by nitrogen are serious problems too. Most recent studies on the deactivation of FCC catalysts at single particle level have provided an in-depth understanding of the deactivation mechanisms. This work will provide the readers with a comprehensive understanding of the current status, related problems and most recent progress made in the FCC technology, and also will deepen insights into the catalyst deactivation mechanisms caused by contaminants and the possible technical approaches to controlling catalyst deactivation problems.  相似文献   

10.
The shape and structure of the vortex formed inside a cyclone separator are very important for the cyclone efficiency, because they mainly govern the separation process. There are many geometrical and operational parameters affecting the vortex. This paper presents experimental results on the effects of the vortex finder dimensions and the surface friction on the vortex length. The cyclone used in this investigation is cylindrical with no conical bottom. The cyclone pressure drop and the vortex length are recorded for each test performed using different flow rates. The results reveal that an increase of the cyclone height, i.e., of the frictional surface, leads to a decrease of the vortex length. It was also shown that the diameter and length of the vortex finder adversely affect the vortex length.  相似文献   

11.
The flow in the wake and near-wake regions of individual Taylor bubbles rising through stagnant and co-current vertical columns of Newtonian liquids was studied, employing simultaneously particle image velocimetry (PIV) and pulsed shadowgraphy techniques (PST). Experiments were made with water and aqueous glycerol solutions covering a wide range of viscosities , in an acrylic column of 32 mm ID.Different wake structures (laminar, transitional and turbulent) are identified, in both stagnant and co-current flow conditions. In stagnant liquids, the wake flow pattern is only dependent on the dimensionless group Nf. The different types of wakes obtained are in accordance with the critical Nf numbers proposed in previous works. For co-current flow conditions, the flow patterns in the wake depend on the Reynolds number based on the relative (to the bubble) average velocity of the upward liquid flow, the laminar-transitional and transitional-turbulent limits being for the first time experimentally determined.The wake flow patterns are quantified by means of instantaneous and average flow fields. Values for the wake length and wake volume are also presented and compare well with correlations found in literature. Study of the flow in the near-wake zone enabled determination of the distance needed to recover the undisturbed liquid velocity profile.The detailed study of the flow in the wake and near-wake regions is an important contribution to better understanding the interaction and coalescence mechanisms between Taylor bubbles.The data reported are relevant to the validation of numerical simulation codes in the vertical slug flow regime.  相似文献   

12.
Along more than a decade, R&D on supercritical fluid extraction (SFE) of vegetable matrices has been increasingly reported in the literature. Aiming at portraying the current state of this field and its evolution in terms of raw materials, products, modes of operation, optimization, modeling techniques, and closeness to industrial application, a large compilation of almost 600 essays from 2000 to 2013 has been deeply analyzed in order to unveil those indicators and their trends. Furthermore, strengths and weaknesses are identified, and some remarks that may drive upcoming research are provided.Globally, more than 300 species are reported in the literature, with prevalence of the extraction of seeds (28% of works) and leaves (17%). The main families of extracted compounds, cosolvents and operating conditions adopted are critically examined, being possible to conclude that researchers investigate many times working regions far from the optimum due to practical limitations or absence of experimental optimization. Current phenomenological, statistical and semi-empirical approaches are reviewed, along with scale-up studies, and economic analysis. In the whole, the most comprehensive picture over SFE of vegetable matrices is provided in this review, highlighting pertinent aspects and opportunities that may further consolidate the convincing route of this technology for the next years.  相似文献   

13.
Wire‐mesh sensors are increasingly used for flow imaging in packed beds. In this study, a capacitance wire‐mesh sensor is applied to measure the cross‐sectional liquid phase distribution in a rotating fixed‐bed reactor. The liquid filling level is derived as a crucial parameter defining the operational window of the reactor concept. Contrary to the standard sensor configuration, wireless data transfer and autonomous power supply is integrated. Furthermore, appropriate data processing is required to visualize the liquid flow of the three‐phase system (nitrogen, cumene and γ‐Al2O3 particles).  相似文献   

14.
We have derived a new set of closure equations for the rheologic properties of a dense gas-solid fluidised bed consisting of a multi-component mixture of slightly inelastic spheres, using the Chapman-Enskog solution procedure of successive approximations, where the particle velocity distribution of all particle species is assumed to be nearly Maxwellian around the particle mixture velocity with the particle mixture granular temperature. In this theory, differences in the mean velocities (i.e. particle segregation) and granular temperatures of the particle species result from higher order perturbation functions. Special attention is paid to assure thermodynamic consistency between the radial distribution function and the chemical potential of a hard-sphere particle specie appearing in the diffusion driving force when applying the revised Enskog theory, which is often overlooked. In the resulting closure equations, the rheologic properties of the particle mixture are explicitly described in terms of the particle mixture velocity and granular temperature, and the diffusion velocity and granular temperature of the individual particle phases can be computed from the mixture properties, which is a major advantage with respect to the numerical implementation. A new numerical solution strategy has been devised, which is an extension of the well-known SIMPLE algorithm and takes the compressibility of the solids phase directly into account, which allows for much larger time steps (about a factor of 10 larger). In Part 2 the simulation results obtained with the new model are compared with experimental data and discrete particle model (DPM) simulations.  相似文献   

15.
Computational fluid dynamics (CFD) has proven to be a reliable tool for fixed bed reactor design, through the resolution of 3D transport equations for mass, momentum and energy balances. Solution of these equations allow to obtain velocity and temperature profiles within the reactor. The numerical results obtained allow estimating useful parameters applicable to equipment design. Particle-to-fluid heat transfer coefficient is of primal importance when analyzing the performance of a fixed bed reactor. To gain insight in this subject, numerical results using a modified commercial CFD solver are presented and particle-to-fluid heat transfer in fixed beds is analyzed. Two different configurations are studied: forced convection at low pressure (with air as circulating fluid) and mixed (i.e., free+forced) convection at high pressure (with supercritical CO2 as circulating fluid). In order to impose supercritical fluid properties to the model, modifications into the CFD code were introduced by means of user defined functions (UDF) and user defined equations (UDE). The obtained numerical data is compared to previously published data and a novel CFD-based correlation (for free, forced and mixed convection at high pressure) is presented.  相似文献   

16.
In this work, a four-section pulsed fluid bed apparatus with a 0.18 m2 cross-section area was used to investigate the influence of pulsed-fluidization variables on the drying process of molecular sieves, a test material that was chosen because it presents an initial constant drying rate period. A two-level factorial design was developed to evaluate the influences of the inlet gas temperature—40 and 70°C—the frequency of pulsation—250 and 900 rpm—and the air flow rate—500 and 600 m3(STP)/h—on the drying rate. In addition, a comparison was made between the drying rates achieved with conventional and pulsed fluidization. Results showed that all the investigated variables affect the drying rate. Moreover, drying rates with conventional fluidization are considerably higher, which shows that one must expect a lower drying rate when pulsation is used in a drying process controlled by the external evaporation. Concerning fluid dynamics, this work also analyzed the influence of the frequency of pulsation on the pressure drop across the bed. The higher the frequency, the higher the pressure drop. That result can be explained by the reduction of channeling.  相似文献   

17.
The process of bubble formation is involved in several gas-liquid reactors and process equipment. It is therefore important to understand the dynamics of bubble formation and to develop computational models for the accurate prediction of the bubble formation dynamics in different bubbling regimes. This work reports the numerical investigations of bubble formation on submerged orifices under constant inflow conditions. Numerical simulations of bubble formation at high gas flow rates, where the bubble formation is dominated by inertial forces, were carried out using the combined level set and volume-of-fluid (CLSVOF) method and the predictions were experimentally validated. Effects of gas flow rate and orifice diameter on the bubbling regimes and in particular, on the transition from period-1 to period-2 bubbling regime (with pairing or coalescence at the orifice) were investigated. Using the simulation data on the transition of bubble formation regimes, the bubble formation regime map constructed using Froude and Bond numbers is presented.  相似文献   

18.
The formation of oil drops from a single capillary with a diameter of 200 μm into a cross-flowing continuous water phase has been studied experimentally with the particle image velocimetry (PIV) technique and numerically with the computational fluid dynamics (CFD) software Fluent. The drop formation time and the volume of the detached drop were used as validation parameters and the results from the two methods corresponded well, with a difference of less than 5% for the drop formation time and 10% for the drop volume. The cross-flow velocity has a major impact on drop size, which decreases as the cross-flow increases. An increase in cross-flow, oil viscosity and capillary pressure displace the position of necking and drop detachment away from the capillary opening, which will have a decreasing effect on the final size of the drop.  相似文献   

19.
The goal of this paper was to make the link between sintering of a 1.6% Pt/Al2O3 catalyst and its activity for CO oxidation reaction. Thermal aging of this catalyst for different durations ranging from 15 min to 16 h, at 600 and 700 °C, under 7% O2, led to a shift of the platinum particle size distributions towards larger diameters, due to sintering. These distributions were studied by transmission electron microscopy. The number and the surface average diameters of platinum particles increase from 1.3 to 8.9 nm and 2.1 to 12.8 nm, respectively, after 16 h aging at 600 °C. The catalytic activity for CO oxidation under different CO and O2 inlet concentrations decreases after aging the catalyst. The light-off temperature increased by 48 °C when the catalyst was aged for 16 h at 600 °C. The CO oxidation reaction is structure sensitive with a catalytic activity increasing with the platinum particle size. To account for this size effect, two intrinsic kinetic constants, related either to platinum atoms on planar faces or atoms on edges and corners were defined. A platinum site located on a planar face was found to be 2.5 more active than a platinum site on edges or corners, whatever the temperature. The global kinetic law {r (mol m−2 s−1) = 103 × exp(−64,500/RT)[O2]0.74[CO]−0.5)} related to a reaction occurring on a platinum atom located on planar faces allows a simulation of the CO conversion curves during a temperature ramp. Modeling of the catalytic CO conversion during a temperature ramp, using the different aged catalysts, allows prediction of the CO conversion curves over a wide range of experimental conditions.  相似文献   

20.
Vinyl polymers are widely used in biological, textile and industrial applications and are currently attracting research attention for specialized bio-based applications. Polyvinyl alcohol (PVA) hydrogels show great advantages as a material with high biocompatibility, permeability, hydrophilicity, and low-friction coefficient, allowing applications as smart materials, wound dressings, and flexible sensors. However, the poor mechanical properties of PVA hydrogels and biocompatibility less than natural polymers make them unsuitable in practical applications. Additives are often added to PVA hydrogels to enhance mechanical properties, endow more compatibility, functionality and expand their application range. Among them, bio-additives such as nanocellulose, natural polysaccharides and proteins are biodegradable, biocompatible, and inexpensive, broadening their applications in the biomedical and tissue engineering fields. This work reviews the synthesis of PVA hydrogels, methods to enhance their mechanical properties, types of bio-additives incorporated for biocompatibility, their mechanism of interaction with PVA and future prospects of PVA composite bio-hydrogels for application in various fields. Representative cases are carefully selected and discussed with regard to their composition and pros and cons are discussed. Finally, future requirements, as well as the opportunities and challenges of these bio-additives for improving the multifunctionality of PVA hydrogels are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号