首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protective effects of ischemic preconditioning on ischemia-reperfusion injury was investigated using isolated Langendorff perfusing hearts from ground squirrel and rat. In Preconditioning I group hearts were first perfused with Krebs-Henseleit solution for 10 min to establish a steady state, then stopped for 15 min to establish global ischemia, and finally followed by 10 min ischemia and 10 min reperfusion. In Preconditioning II group there were three cycles of 5 min ischemia + 5 min reperfusion after 10 min equilibration and then the final 10 min ischemia and 10 min reperfusion were followed. It was found that in group I during the final 10 min ischemia period there was remarkable augmentation of CK release from both animal's hearts. But in group II CK release decreased markedly during the same ischemic period. CK release during final 10 min reperfusion period also decreased significantly in group II in comparison with group I. The incidence of arrhythmias occurred in both animal's hearts was markedly reduced in group II rather than group I. In conclusion, short episode ischemic preconditioning protect subsequent ischemia-reperfusion injury on isolated hearts from ground squirrel and rat.  相似文献   

2.
The aim of this study was to investigate whether or not a graduated resumption of the perfusion pressure after cardioplegic ischaemic arrest will reduce the impact of oxygen free radicals on myocardium and the cardiovasculature. Langendorff-perfused rat hearts were subjected to cardioplegia and subsequent 40 min of global ischaemia at 25 degrees C. Reperfusion was carried out either abruptly (AR) or gradually (i.e., perfusion pressure stepwise increased from 40 to 75 mmHg within 30 min -GR). GR resulted in a significant improvement of percentage recovery of left ventricular systolic pressure as compared to AR. A marked increase of thiobarbituric acid reactive substances (TBARS) was detected in the effluent during AR, accompanied by an impaired release of the endothelial vasodilator NO and diminished coronary flow rates compared to the baseline values. GR resulted in a significant reduction of TBARS in the effluent and promoted a better recovery of coronary flow as well as endothelial release of NO during the later phase of reperfusion. It is concluded that graduated reperfusion is beneficial in reducing free radical mediated peroxidative tissue injury and endothelial dysfunction upon reoxygenation.  相似文献   

3.
Endothelin-1 (ET-1) is the most potent vasoconstrictor known to date, and it was proposed that this peptide plays a major role in myocardial ischemia/reperfusion injury. ET-1 could increase myocardial susceptibility to ischemia by two mechanisms: via coronary flow reduction and/or via direct, metabolic effects on the heart. In isolated, buffer-perfused rat hearts, function was measured with a left ventricular balloon, and energy metabolism (ATP, phosphocreatine, inorganic phosphate, intracellular pH) was estimated by 31NMR-spectroscopy. Under constant pressure perfusion, hearts were subjected to 15 min of control perfusion, 15 ("moderate injury") or 30 ("severe injury") min of global ischemia, followed by 30 min of reperfusion. Hearts were pre-treated with ET-1 (boluses of 0.04, 4, 40 of 400 pmol) 5 min prior to ischemia. In the control period, ET-1 reduced coronary flow, ventricular function, phosphocreatine and intracellular pH dose-dependently: during ischemia/reperfusion, coronary flow, functional recovery and high-energy phosphate metabolism were adversely affected by ET-1 in a dose-related manner. To study effects of ET-1 not related to coronary flow reduction, additional hearts were perfused under constant flow conditions (ET-1 0 or 400 pmol) during 15 min of control, 15 min of ischemia and 30 min of reperfusion. When coronary flow was held constant, functional and energetic parameters were similar for untreated and ET-1 treated hearts during the entire protocol, i.e. the adverse effects of ET-1 on function and energy metabolism during ischemia/reperfusion were completely abolished. In both constant pressure and constant flow protocols, 400 pmol ET-1 reduced the extent of ischemic intracellular acidosis. The authors conclude that ET-1 increases the susceptibility of isolated hearts to ischemia/reperfusion injury via reduction of coronary flow.  相似文献   

4.
It has been shown that reactive oxygen species produced during the early phase of myocardial post-ischemic reperfusion are one of the main causes of reperfusion injury. This observation has led to various antioxidant strategies using many reactive oxygen species scavengers, including manganese complexes. The aim of the present work was to provide a reference study of the effects of manganese itself (MnCl2) on isolated rat hearts submitted to global total normothermic ischemia (30 min) and reperfusion (60 min). McCl2 was administered either during the first 10 min reperfusion (10(-5)M and 10(-4)M) or throughout reperfusion (10(-4)M). After 10 min reperfusion, no functional difference was evidenced between control and manganese-treated groups, whereas high energy phosphate contents were significantly higher in treated groups. MnCl2 10(-4)M enhanced the recovery of developed pressure between 40 and 55 min reperfusion. At the end of reperfusion, hearts treated during the first 10 min reperfusion showed a better metabolic recovery. The group treated throughout reperfusion showed a better metabolic recovery, but a reduced coronary flow and a weak recovery of developed pressure. These results suggest that MnCl2, administered during the early phase of reperfusion, protects against myocardial reperfusion injury. This effect might be mediated by manganese antioxidant properties.  相似文献   

5.
Junctional sequences of immunoglobulin (Ig)/T-cell receptor (TCR) gene rearrangements are used as patient-specific PCR targets for the detection of minimal residual disease (MRD) in acute lymphoblastic leukaemias (ALLs). Clonal evolution of gene rearrangements is a major pitfall of this strategy. Using high-resolution PCR-based analyses (including denaturing gel electrophoresis and single-stranded conformation polymorphism (SSCP)) we have compared Ig/TCR gene rearrangements at presentation and relapse in a series of ALLs. These methods allow an unambigous comparison of rearrangements taking into account junctional size and nucleotide sequence information and allow a precise assessment of the clonal evolution. V gamma-J gamma and V delta 1-J delta 1 rearrangements were analysed in 12 T-ALLs. VH-JH, V gamma-J gamma, V delta 2-D delta 3 and, in selected cases, DH-JH rearrangements were studied in 14 B-lineage ALLs. Clonal evolution, regarding major rearrangements, occurs for at least one of these loci in 2/12 T-ALLs and in 5/14 B-lineage ALLs. Clonal evolution is more marked for minor rearrangements than for major ones. As shown using SSCP analysis, rearrangements observed at relapse are sometimes found in minor clones at presentation which are therefore selected in vivo by a proliferative advantage. These data, as well as those from the available literature, suggest the use of at least two patient-specific probes to detect MRD in ALLs. A general strategy including selected Ig/TCR rearrangements and chromosomal abnormalities as PCR targets is proposed.  相似文献   

6.
7.
8.
The production of free radicals on reperfusion has been implicated as an important factor governing post-ischemic recovery of cardiac function. Although the response of the heart to ischemia and reperfusion is known to change during cardiac development, it is not known if different rates of free radical production play a role in these altered responses. The aim of this investigation was to determine if the production of the superoxide anion (O2-) on reperfusion differs in the immature and mature heart. Immature hearts, obtained from 3-day premature guinea pigs (delivered by cesarean section) were compared with those from adults (7 weeks old). Using the isolated Langendorff preparation. O2- production was measured during reperfusion following ischemic durations [0 (aerobic control), 15, 20, 30, and 60 min, n = 6/group] by the reduction of succinylated ferricytochrome c in the perfusate. Both immature and mature hearts exhibited bell-shaped relationship between ischemic duration and peak O2- production on reperfusion: (13.4 +/- 5.9; 22.2 +/- 5.4; 23.0 +/- 7.8; 59.3 +/- 16.2; 33.7 +/- 15.1; 32.6 +/- 8.5 nmol/min/g wet weight in the immature heart and 15.7 +/- 1.9; 55.0 +/- 30.2; 82.8 +/- 14.0; 78.8 +/- 33.8; 40.6 +/- 16.4; 45.4 +/- 13.1 nmol/min/g wet weight in the mature heart after 0; 15; 20; 30; 45 and 60 min of ischemia, respectively). A similar relationship was also demonstrated with O2- production over the 20-min reperfusion period: (134.0 +/- 57.1; 106.5 +/- 46.2; 199.3 +/- 50.6; 362.0 +/- 99.5; 375.0 +/- 60.9; 221.0 +/- 73.0 nmol/20 min/g wet weight in the immature heart and 97.8 +/- 54; 282.0 +/- 139.0; 933.3 +/- 210.3; 964.0 +/- 374.0; 443.0 +/- 106.0; 352.0 +/- 1551.0 nmol/20 min/g wet weight in the mature heart after 0, 15, 20, 30, 45 and 60 min of ischemia, respectively). Mature hearts consistently produced more O2- than immature hearts on reperfusion, while there was no significant difference in their capacity to produce O2- during aerobic perfusion. We conclude that the immature heart may be at less risk from the free radical component of reperfusion injury than the mature heart.  相似文献   

9.
10.
1. Myocardial ischaemic preconditioning (IP) against free radical injury and its possible mediator(s) was investigated in a Langendorff-perfused guinea-pig heart. 2. 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) was used for triggering free radical injury in cardiac tissue. It reduced left ventricular developed pressure (LVDP), +/- dp/dtmax, heart rate (HR) and coronary flow (CF) and increased thiobarbituric acid-reactive substances (TBARS) in cardiac tissue. 3. Ischaemic preconditioning (5 min global ischaemia and 5 min reperfusion) exerted cardioprotection against DPPH-induced functional impairment, with significant improvement in LVDP, +/- dp/dtmax, HR and CF. The formation of TBARS in cardiac tissue was reduced. Blockade of bradykinin (BK) B2 receptors with icatibant (HOE 140) abolished the cardio-protective effects of IP. 4. Bradykinin (10(-7) mol/L) perfusion for 10 min protected the heart against free radical injury. The cardioprotection induced by BK was reversed by HOE 140. 5. Pretreatment with IP and BK results in cardiac protection against free radical injury through the activation of B2 receptors. Endogenously generated BK may mediate IP in the guinea-pig heart.  相似文献   

11.
The effect of captopril cardioplegia on ischemic and reperfusion myocardium after 3 hours of hypothermic (13 +/- 1 C) arrest and 35 minutes of reperfusion was studied in the isolated working rabbit heart. In comparison with the control group, captopril cardioplegia reduced the content of angiotensin II (381 +/- 56 vs 507 +/- 84 pg/g wt of the control group, P < 0.01) and MDA (50.0 +/- 9.2 vs 85.1 +/- 16.1 pmol/mg pr, P < 0.01) in the reperfusion myocardium; augmented the renin activity of ischemic (1050 +/- 353 vs 669 +/- 301 pg/g wt/h, P < 0.05) and reperfusion myocardium (1261 +/- 421 vs 498 +/- 353 pg/g wt/h, P < 0.01) increased the 6-K-PGF1 alpha/TXB2 ratio in the reperfusion myocardium (by 48.1% of the control group). Meanwhile, captopril cardioplegia could also decrease the content of calcium (0.027 +/- 0.015 vs 0.045 +/- 0.014 microM/mg pr, P < 0.05) and sodium (0.54 +/- 0.26 vs 0.82 +/- 0.15 microM/mg pr, P < 0.05) in the reperfusion myocardium, but had no effect on the potassium content. The results show that the protective effect of captopril on hypothermic myocardium may be related to the free radical scavenging action, inhibition of angiotensin II production, improvement of PGI2/TXA2 ratio and decrease of calcium and sodium overload in the myocardium.  相似文献   

12.
Isolated Sprague-Dawley rat hearts were perfused under constant flow conditions. Hearts were treated with vehicle or treatment buffers, including nisoldipine, nifedipine, or the optical isomers (+)- or (-)-nisoldipine. H2O2 (500-600 microM) was then added to the treatment buffer for 12 min. H2O2 was removed and perfusion continued with treatment buffers (10 min) followed by control buffer (20 min). Contractile function decreased following perfusion with H2O2. Contractile function was protected was protected in a concentration-dependent manner (nisoldipine=19,26,50,63 and 78%; nifedipine = 23, 37, 55,61, and 63% of pre-peroxide function, 0, 0.1, 0.5 1.0, and 5 microliter, respectively). There were no significant differences between equal concentrations of nisoldipine and nifedipine. Contractile function was equally protected by both (+)- and (-)-nisoldipine compared with vehicle-treated hearts (56, 67, and 16%, of pre-peroxide function, respectively). Biochemical analyses indicated that H2O2 damaged plasma membranes (increased lactate dehydrogenase leak) and caused lipid peroxidation (elevated tissue thiobarbituric acid reactive substances). Biochemical changes were equally reduced by nisoldipine and nifedipine treatments and by (+)- and (-)-nisoldipine. The treatment groups have widely differing IC50 values as calcium channel antagonists, yet they had equal effects in reducing oxidative injury, suggesting that this beneficial effect is not mediated by calcium antagonism.  相似文献   

13.
Glucagon has been demonstrated to stimulate the uptake of bile acid in isolated rat hepatocytes (Am. J. Physiol., 249, G427 (1985)). In the present study, we determined the influence of glucagon on the hepatic transport of a bile acid, taurocholate (TCA), in isolated rat livers. A single-pass perfusion and a rapid-injection, multiple indicator dilution method were employed. The hepatic availability at steady-state was 0.04. With the presence of glucagon in the perfusate (from 10(-9) to 10(-7) M), the bile flow rate was stimulated by 30%, while hepatic availability was decreased from 0.04 to 0.02 with a stepwise increase in glucagon concentration. Thirty min after the infusion of glucagon (300 nM), [3H]TCA and [14C]inulin were injected in a bolus state into the portal vein, and the outflow was collected at 1.0 s intervals over 30 s. Glucagon decreased the instantaneous hepatic availability by 50% compared to the control level, and was thus compatible with the steady-state experiments. In the control experiment, the influx clearance (PSinf) was 20 times higher than the efflux clearance (PSeff). Glucagon (300 nM) in the perfusate enhanced PSinf by 50% of the control, whereas sequestration clearance (CLseq) and the biliary excretion rate constant remained unchanged. PSeff was stimulated to 2 times the control, but still remained much smaller than CLseq. Based on the comparison of PSinf, PSeff and CLseq, the rate-determining process of TCA hepatic elimination was the influx process in both the presence and absence of glucagon. Taken together, the enhancement of the influx process was responsible for the decrease in TCA hepatic availability caused by glucagon.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Free radical mediated, site-specific lipid and protein oxidation has been implicated in the pathophysiology of an ischaemic/reperfusion injury. The aim of the present study was to determine whether carbonyl formation could be detected histochemically in reperfused rat sciatic nerves. We also examined the effects of preischaemic alpha-tocopherol supplementation on carbonyl formation in reperfused nerves. Seven hours of near-complete ischaemia was induced in rat right hindlimb by occlusion of major arteries using microvascular clips. Histochemical detection of carbonyl compounds, applying naphthoic acid hydrazide (NAH) and Fast Blue B (FBB), was undertaken at thigh, knee and calf levels of sciatic, tibial and peroneal nerves. NAH-FBB reactivity was confined to vessels in reperfused nerves. Positively stained epi-, peri- and endoneurial vessels were invariably observed after 2 h of reperfusion at all levels examined. After 24 and 48 h and 7 days of reperfusion, NAH-FBB-positive vessels were more frequently found at knee and calf levels than at the thigh level. Following preischaemic alpha-tocopherol supplementation, no vessels were stained positively with NAH-FBB, except for some epineurial vessels at knee and calf levels after 2 h of reperfusion. Morphometry in endoneurial vessels at the knee level revealed that endothelial cell area in alpha-tocopherol-treated reperfused nerves was significantly less when compared with those in reperfused nerves without alpha-tocopherol. In conclusion, we have demonstrated histochemical evidence of carbonyl formation in vessels, but not with nerve fibres, in ischaemic/reperfused rat sciatic nerves. These abnormalities were prevented with preischaemic supplementation of alpha-tocopherol.  相似文献   

15.
1. The functional role of the nitric oxide (NO)/guanosine 3':5'-cyclic monophosphate (cyclic GMP) pathway in experimental myocardial ischaemia and reperfusion was studied in rat isolated hearts. 2. Rat isolated hearts were perfused at constant pressure with Krebs-Henseleit buffer for 25 min (baseline), then made ischaemic by reducing coronary flow to 0.2 ml min(-1) for 25 or 40 min, and reperfused at constant pressure for 25 min. Drugs inhibiting or stimulating the NO/cyclic GMP pathway were infused during the ischaemic phase only. Ischaemic contracture, myocardial cyclic GMP and cyclic AMP levels during ischaemia, and recovery of reperfusion mechanical function were monitored. 3. At baseline, heart rate was 287+/-12 beats min(-1), coronary flow was 12.8+/-0.6 ml min(-1), left ventricular developed pressure (LVDevP) was 105+/-4 mmHg and left ventricular end-diastolic pressure 4.6+/-0.2 mmHg in vehicle-treated hearts (control; n=12). Baseline values were similar in all treatment groups (P>0.05). 4. In normoxic perfused hearts, 1 microM N(G)-nitro-L-arginine (L-NOARG) significantly reduced coronary flow from 13.5+/-0.2 to 12.1+/-0.1 ml min(-1) (10%) and LVDevP from 97+/-1 to 92+/-1 mmHg (5%; P<0.05, n=5). 5. Ischaemic contracture was 46+/-2 mmHg, i.e. 44% of LVDevP in control hearts (n=12), unaffected by low concentrations of nitroprusside (1 and 10 microM) but reduced to approximately 30 mmHg (approximately 25%) at higher concentrations (100 or 1000 microM; P<0.05 vs control, n=6). Conversely, the NO synthase inhibitor L-NOARG reduced contracture at 1 microM to 26+/-3 mmHg (23%), but increased it to 63+/-4 mmHg (59%) at 1000 microM (n=6). Dobutamine (10 microM) exacerbated ischaemic contracture (81+/-3 mmHg; n = 7) and the cyclic GMP analogue Sp-8-(4-p-chlorophenylthio)-3',5'-monophosphorothioate (Sp-8-pCPT-cGMPS; 10 microM) blocked this effect (63+/-11 mmHg; P<0.05 vs dobutamine alone, n=5). 6. At the end of reperfusion, LVDevP was 58+/-5 mmHg, i.e. 55% of pre-ischaemic value in control hearts, significantly increased to approximately 80% by high concentrations of nitroprusside (100 or 1000 microM) or L-NOARG at 1 microM, while a high concentration of L-NOARG (1000 microM) reduced LVDevP to approximately 35% (P<0.05 vs control; n=6). 7. Ischaemia increased tissue cyclic GMP levels 1.8 fold in control hearts (P<0.05; n=12); nitroprusside at 1 microM had no sustained effect, but increased cyclic GMP approximately 6 fold at 1000 microM; L-NOARG (1 or 1000 microM) was without effect (n=6). Nitroprusside (1 or 1000 microM) marginally increased cyclic AMP levels whereas NO synthase inhibitors had no effect (n=6). 8. In conclusion, the cardioprotective effect of NO donors, but not of low concentrations of NO synthase inhibitors may be due to their ability to elevate cyclic GMP levels. Because myocardial cyclic GMP levels were not affected by low concentrations of NO synthase inhibitors, their beneficial effect on ischaemic and reperfusion function is probably not accompanied by reduced formation of NO and peroxynitrite in this model.  相似文献   

16.
EPR spectroscopy was used to measure paramagnetic species in rat hearts freeze-clamped during control perfusion by the Neely procedure, after 25 min of normothermic global ischemia or 20 min of total reperfusion with oxygenated perfusate. The analysis of spectral and relaxation parameters measured at -40 degrees C showed that in all three cases free radicals in heart tissue were semiquinones of CoQ10 and flavins. Ischemia increased the amount of free radical species (mostly flavosemiquinones) in myocardium about two times, the beginning of reflow of perfusate resulted in decrease of the intensity of the EPR signal to an initial level. The saturation curves were different for control, ischemic and reoxygenated postischemic samples, and they demonstrated the heterogeneity of free radical centers in cardiac mitochondria.  相似文献   

17.
To investigate the effects of halothane, enflurane, and isoflurane on myocardial reperfusion injury after ischemic protection by cardioplegic arrest, isolated perfused rat hearts were arrested by infusion of cold HTK cardioplegic solution containing 0.015 mmol/L Ca2+ and underwent 30 min of ischemia and a subsequent 60 min of reperfusion. Left ventricular (LV) developed pressure and creatine kinase (CK) release were measured as variables of myocardial function and cellular injury, respectively. In the treatment groups (each n = 9), anesthetics were given during the first 30 min of reperfusion in a concentration equivalent to 1.5 minimum alveolar anesthetic concentration of the rat. Nine hearts underwent the protocol without anesthetics (controls). Seven hearts underwent ischemia and reperfusion without cardioplegia and anesthetics. In a second series of experiments, halothane was tested after cardioplegic arrest with a modified HTK solution containing 0.15 mmol/L Ca2+ to investigate the influence of calcium content on protective actions against reperfusion injury by halothane. LV developed pressure recovered to 59%+/-5% of baseline in controls. In the experiments with HTK solution, isoflurane and enflurane further improved functional recovery to 84% of baseline (P < 0.05), whereas halothane-treated hearts showed a functional recovery similar to that of controls. CK release was significantly reduced during early reperfusion by isoflurane and enflurane, but not by halothane. After cardioplegic arrest with the Ca2+-adjusted HTK solution, halothane significantly reduced CK release but did not further improve myocardial function. Isoflurane and enflurane given during the early reperfusion period after ischemic protection by cardioplegia offer additional protection against myocardial reperfusion injury. The protective actions of halothane depended on the calcium content of the cardioplegic solution. IMPLICATIONS: Enflurane and isoflurane administered in concentrations equivalent to 1.5 minimum alveolar anesthetic concentration in rats during early reperfusion offer additional protection against myocardial reperfusion injury even after prior cardioplegic protection. Protective effects of halothane solely against cellular injury were observed only when cardioplegia contained a higher calcium concentration.  相似文献   

18.
Respiratory sinus arrhythmia (RSA) was examined in aerobically trained (AT) and untrained (NT) college-aged males during 12 periods consisting of a 3-min sitting baseline, six common 3-min absolute exercise stages, and five 3-min recovery stages that followed voluntary exhaustion to determine the relationship of work and training status to parasympathetic influence upon the heart. RSA systematically decreased during absolute exercise, was observed at heart rates (HR) above 100 beats x min(-1), and progressively increased during recovery. Additionally, independent of work stages, comparative regression analyses were conducted for both the exercise and recovery phases, separately, in which HR was regressed on RSA, as well as RSA on % VO2max, to contrast the obtained relationships for the AT and NT. No differences were revealed as a function of endurance training status as the slopes and intercepts obtained for the two groups from each of these analyses were similar. The within-subject correlations between RSA and % VO2max, calculated for each of the individuals across all 12 periods, were consistently negative. Between-subjects correlations of RSA with RR and tidal volume were predominantly nonsignificant, indicating that RSA, as measured here, is independent of individual differences in ventilatory activity and, as such, can be compared between groups during exercise. The findings demonstrate that RSA is detectable during both exercise and recovery, even at HR beyond 100 beats x min(-1), and reveals a similar relationship to HR and metabolic state in both aerobically trained and untrained populations.  相似文献   

19.
To examine whether amiloride protects against ischemia-induced or reperfusion-induced damage to the heart, mechanical and metabolic studies were performed in the isolated, working rat heart. Ischemia decreased both mechanical function and the tissue levels of high-energy phosphates and increased the tissue levels of free fatty acids (FFAs). Reperfusion restored the levels of high-energy phosphates but further increased FFA accumulation. For this reason, accumulation of FFAs was used as an indicator of both ischemia-induced and reperfusion-induced damage. Drugs were added to the perfusion solution 5 min before ischemia until the end of ischemia (pre) or until 10 min after reperfusion (pre + post). Diltiazem (1 or 5 mumol/L pre) decreased the mechanical function of the non-ischemic heart and attenuated both ischemia-induced and reperfusion-induced accumulation of FFAs. Amiloride (50 mumol/L pre) did not affect the mechanical function of the non-ischemic heart or attenuate ischemia-induced or reperfusion-induced FFA accumulation effectively. However, amiloride (50 mumol/L pre + post) did markedly attenuate the reperfusion-induced accumulation of FFAs. In conclusion, diltiazem attenuates both ischemia-induced and reperfusion-induced myocardial damage, probably through its energy-sparing effect as a result of a decrease in mechanical function before ischemia. In contrast, amiloride attenuates only the reperfusion-induced myocardial damage through mechanisms other than the energy-sparing effect.  相似文献   

20.
Lipases contained in commercial samples of lipase extracts from Rhizopus niveus (RNL) and Candida rugosa (CRL) have been selectively adsorbed on hydrophobic supports at very low ionic strength. Under these conditions, adsorption of other proteins (including some esterases) is almost negligible. More interestingly, these lipases could be separated in several active fractions as a function of a different rate or a different intensity of adsorption on supports activated with different hydrophobic groups (butyl-, phenyl- and octyl-agarose). Thus, although RNL seemed to be a homogeneous sample by SDS-PAGE, it could be separated, via sequential adsorption on the different supports, into three different fractions with very different thermal stability and substrate specificity. For example, one fraction hydrolyzed more rapidly ethyl acetate than ethyl butyrate, while another hydrolyzed the acetate ester 7-fold slower than the butyrate. Similar results were obtained with samples of CRL. Again, we could obtain three different fractions showing very different properties. For example, enantioselectivity for the hydrolysis of (R,S) 2-hydroxy-4-phenylbutanoic acid ethyl ester ranged from 1.2 to 12 for different CRL fractions. It seems that very slight structural differences may promote a quite different interfacial adsorption of lipases on hydrophobic supports as well as a quite different catalytic behavior. In this way, this new 'interfacial affinity chromatography' seems to be very suitable for an easy separation of such slightly different lipase forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号