首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 312 毫秒
1.
Mg-(11-13)Gd-1Zn变形镁合金的组织和力学性能   总被引:1,自引:0,他引:1  
制备了3种成分的Mg-Gd-Zn三元合金,并对其显微组织和力学性能进行了较系统的研究.结果表明,Mg-(11-13)Gd-1Zn(质量分数,%)三元合金的铸态组织由α-Mg,(Mg,Zn)3Gd和具有14H结构的长周期堆垛有序相(14H-LPSO)组成;(Mg,Zn)3Gd呈现典型的网状共晶形貌,其体积分数随Gd含量的增加而增大.热挤压过程中(Mg,Zn)3Gd相破碎,其颗粒沿挤压方向排列,而14H-LPSO相则分布于条状分布的(Mg,Zn)3Gd颗粒之间.铸态和挤压态合金在高温固溶处理后,14H-LPSO相的体积分数增加,大部分(Mg,Zn)3Gd相溶入基体.挤压态合金经固溶和时效(T6)处理后,显微组织中14H-LPSO相的体积分数大幅度增加,而且出现了β′和β1沉淀颗粒.对挤压后的合金直接进行时效处理(T5)过程中也形成了β′和β1沉淀,但14H-LPSO相没有显著增加.3种合金中Mg-11Gd-1Zn合金在T6态的性能最好,抗拉强度高达416 MPa.  相似文献   

2.
采用光学显微镜、扫描电镜、X射线衍射仪和拉伸试验机等研究了不同热处理状态下Mg-12Gd-1Zn-0.5Zr合金的物相、显微组织和力学性能.结果 表明:铸态Mg-12Gd-1Zn-0.5Zr合金的组织主要由α-Mg基体、Mg5(Gd,Zn)、Mg5Gd以及Mg10ZnGd(18R-LPSO)相构成.固溶处理后,LPSO...  相似文献   

3.
采用扫描电子显微镜、能谱分析仪、X射线衍射仪和动态机械热分析仪等研究Zn含量对Mg-10Gd-6Y-xZn-0.6Zr(x=0.6,1.6,2.6,3.6,质量分数,%)合金显微组织、力学和阻尼性能的影响。结果表明:铸态下,Mg-10Gd-6Y-0.6Zn-0.6Zr合金中第二相主要为Mg5(Gd,Y,Zn),在Mg基体中,由晶界处向晶内平行生长出大量层状相;随Zn含量的增加,Mg5(Gd,Y,Zn)相减少,Mg12Zn(Y,Gd)相增多;当Zn含量达到3.6%时,第二相主要以Mg12Zn(Y,Gd)相存在,Mg基体中的层状相几乎消失。对于挤压态的Mg-10Gd-6Y-1.6Zn-0.6Zr合金,其基体中呈现大量扭曲的层状相,合金抗拉强度达到400 MPa,随着Zn含量的增加,合金强度呈下降趋势,但塑性得到改善。铸态合金的阻尼性能随Zn含量的增加先下降后上升,采用Granato-Lücke(G-L)理论和G-L图对合金阻尼性能进行了分析和讨论。  相似文献   

4.
研究了Mg-11.3Gd-1.2Y-1.1Al、Mg-15.6Gd-1.2Y-1.0Al、Mg-17.5Gd-1.1Y-1.0Al和Mg-13.2Gd-2.9Y-0.9Al4种铸造镁合金的显微组织、室温拉伸性能和阻尼性能。结果表明,铸态Mg-Gd-Y-Al合金由α-Mg、Al2(Gd,Y)和Mg24(Gd,Y)5相组成;经过固溶处理,晶粒内部析出条状LPSO相。铸态Mg-Gd-Y-Al合金的力学性能与合金中的稀土元素总含量密切相关,稀土总含量较高的合金具有较高的强度和较差的塑性。T4处理后,合金屈服强度小幅下降,抗拉强度少量提高,伸长率则大幅提升。T6处理后,合金的屈服强度有了明显的提高,稀土元素总含量较高的3种合金屈服强度增幅大于80MPa。铸态合金的比阻尼性能随着合金中Gd含量的增加而降低;T6处理可以显著提高合金的比阻尼性能。4种铸造合金经过T4和T6热处理后比阻尼值P0.1在4.92%~8.22%之间,属于中等阻尼性能材料。  相似文献   

5.
采用熔炼铸造法制备了添加0~2%Zn(质量分数)的Mg-10Gd-3Sm-0.5Zr合金,通过X射线衍射、扫描电镜和拉伸性能测试等分析了Zn对铸态Mg-10Gd-3Sm-0.5Zr合金组织与性能的影响。结果表明:铸态Mg-10Gd-3Sm-0.5Zr合金由粗大枝晶α-Mg基体和晶界处半连续分布稀土相Mg41(Sm,Gd)5和Mg5Gd(Sm)组成,加入Zn元素后,在合金中产生了新相(Mg,Zn)3(Sm,Gd)1;铸态Mg-10Gd-3Sm-xZn-0.5Zr合金室温拉伸力学性能随着Zn元素含量的增加先升高后降低,当Zn的添加量为1%时,综合力学性能最好,其抗拉强度、屈服强度、伸长率分别为215 MPa、173 MPa和5.5%;合金的断裂方式主要为脆性断裂,加入Zn元素后有向韧性断裂转变的趋势。  相似文献   

6.
制备了3种不同成分的Mg-Gd-Y三元合金,并对其显微组织和力学性能进行了研究.结果表明,Mg-6Gd-(2-4)Y三元合金的铸态组织由α-Mg和呈现典型的网状共晶形貌的Mg24(GdY)5相组成,其体积分数随Y含量的增加而增大.热挤压过程中Mg24(GdY)s相破碎,呈颗粒状沿挤压方向排列.挤压态合金在高温固溶处理后,大部分Mg24(GdY)5相溶入基体.挤压态合金在固溶+时效(T6)处理和直接时效(T5)处理过程中都形成了β沉淀.3种合金中Mg-6Gd-4Y合金在T5态的性能最好,强度高达350 MPa.  相似文献   

7.
研究添加不同含量Zn对铸态Mg-2Dy(摩尔分数,%)合金显微组织、时效行为和力学性能的影响。结果表明:Zn含量为0.5%和1%(摩尔分数)时,铸态合金中分别析出片层状具有18R类型长周期有序(LPSO)结构的Mg12Zn Dy相和粗大的Mg3Zn3Dy2相;同时,Zn的添加细化了合金的晶粒;固溶处理后,LPSO相由18R类型转变成沿晶内分布的细条状的14H类型,新的(Mg,Zn)x Dy相形成,且Mg3Zn3Dy2相的体积分数减小;添加0.5%Zn有效地增强了合金的时效硬化行为,提高了合金的室温和200℃的拉伸强度。  相似文献   

8.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱分析仪以及拉伸试验机,研究了Zn对铸态Mg-9Gd-4Y-x Zn-0.5Zr(x=0,0.5 1.0,1.5,2.0)合金组织和力学性能的影响。结果表明:铸态Mg-9Gd-4Y-0.5Zr合金显微组织由基体α-Mg和共晶相Mg5(Gd,Y)组成。加入Zn元素后,合金组织中出现Mg5(Gd,Y,Zn)相和Mg12Zn(Gd,Y)相,分布于晶界或晶内。当Zn含量为1%时,合金组织得到明显细化,第二相分布均匀,力学性能显著提升。此时,合金抗拉强度和屈服强度到达最大值,分别为209.72 MPa和172.69 MPa。随着Zn含量进一步增加,合金组织粗化,第二相含量迅速增加且沿晶界逐渐呈网状分布并逐渐向晶内深入,合金强度也明显降低。  相似文献   

9.
研究T4和T6热处理状态下高真空压铸Mg-8Gd-3Y-0.4Zr(质量分数,%)合金的微观组织、化合物含量、力学性能及断裂行为。铸态Mg-8Gd-3Y-0.4Zr合金微观组织主要由α-Mg和共晶Mg24(Gd,Y)5化合物组成。经固溶处理后,共晶化合物大量溶解于镁基体,合金主要含过饱和α-Mg及方块相。固溶合金中方块相的含量随固溶温度的升高而增大,力学性能也有所提高。根据微观组织结果,确定475℃,2 h为Mg-8Gd-3Y-0.4Zr合金最优固溶方案。合金的最佳屈服强度为222.1 MPa,延伸率可达15.4%。铸态,T4状态下和T6状态下合金的拉伸断裂模式为穿晶准解理断裂。  相似文献   

10.
通过金属模铸、热挤压和时效处理(T5)工艺过程制备出高强Mg-7Gd-4Y-1.6Zn-0.5Zr合金,并利用光学显微镜、XRD、SEM及TEM分析研究Mg合金不同状态下的显微组织和力学性能。结果表明:Mg-7Gd-4Y-1.6Zn-0.5Zr合金的铸态组织主要由α-Mg基体和沿晶界分布的片层状第二相Mg12Zn(Gd,Y)组成,经过热挤压变形后,合金晶粒显著细化,时效处理过程中Mg12Zn(Gd,Y)相上析出少量细小的颗粒状Mg3Zn3(Gd,Y)2相。时效态合金的抗拉强度、屈服强度和伸长率分别达到446 MPa、399 MPa和6.1%,其强化方式主要为细晶强化和第二相强化。  相似文献   

11.
通过在Mg-10Gd-2Y-0.5Zr合金中添加Zn,采用SEM、XRD及万能拉伸试验机,研究了Zn添加对其铸态组织和力学性能的影响。结果表明,Mg-10Gd-2Y-0.5Zr合金的铸态组织主要由α-Mg、Mg5(Gd,Y)和Mg24(Y,Gd)5相组成,而添加质量分数为0.5%~1.5%的Zn后,合金的铸态组织主要由α-Mg、Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5及Mg12(Gd,Y)Zn相组成。添加0.5%的Zn后,合金的室温力学性能明显提高,当Zn含量高于1.0%后,镁合金的室温力学性能开始逐步降低。当Zn含量为0.5%时,合金具有较佳的综合力学性能,其抗拉强度、屈服强度和伸长率分别为197 MPa、160 MPa和4.37%。Zn对Mg-10Gd-2Y-0.5Zr合金铸态力学性能的影响与其铸态组织中Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12(Gd,Y)Zn第二相及其数量有关。  相似文献   

12.
采用锂盐熔剂保护熔铸Mg-8Li-4Zn-xGd(x=1,3,5)合金铸锭,研究钆含量对铸态合金组织和力学性能的影响。结果表明:Mg-8Li-4Zn-xGd合金基体由α-Mg(HCP)和β-Li(BCC)双相构成。随着钆含量的增加,Mg5Gd共晶相和Zn12Gd化合物相逐渐连成网状,将基体α+β双相隔离成20~40μm的等轴状或类似于铸铁中的共晶团状,可有效细化α-Mg相和连续的β-Li相;组织中大颗粒Mg2Zn11相弥散分布在β-Li相内,Mg51Zn20相分布在α-Mg晶界处;锌元素还可以在β-Li相中析出细小弥散分布的MgZn相,其数量随钆含量的增加而增加,可直接弥散强化β-Li相。此外,锌和钆对合金硬度的影响较大,随着钆含量的增加,合金的抗拉强度提高,但伸长率降低。  相似文献   

13.
研究了Mg-3.8Zn-2.2Ca-xSn(x=0,0.5,1,2,质量分数%)镁合金的铸态组织、抗拉性能和蠕变性能。结果发现:在含Sn合金中会形成CaMgSn相,并且随着Sn含量从0.46%增加到1.88%(质量分数),合金中CaMgSn相的数量增加。同时,合金中Ca2Mg6Zn3相的形貌从最初的连续和/或半连续网状转变为半连续和/或断续状。此外,含Sn合金的晶粒被明显细化,其中含0.90%Sn合金的晶粒最细。与三元合金相比,含0.46%和0.90%Sn合金的抗拉性能和蠕变性能改善明显,而含1.88%Sn合金的屈服强度和蠕变性能虽然得到改善,但其抗拉强度和延伸率减小。在含0.46%、0.90%和1.88%Sn的3个合金中,含0.90%Sn的合金显示了优化的抗拉性能和蠕变性能。  相似文献   

14.
研究了铝和锂元素含量不同的Mg-12Gd-1Zn-0.5Zr-0.5Ag(质量分数,%)合金经T6热处理后的组织演变和力学性能。结果表明,T6热处理后,有新的Mg3Gd颗粒从Mg-12Gd-1Zn-0.5Zr-0.5Ag合金中析出,且Mg-12Gd-4Al-3Li-1Zn-0.5Zr-0.5Ag和Mg-12Gd-6Al-5Li-1Zn-0.5Zr-0.5Ag合金中的大多数Al2Li3相变得更细小,分布更均匀。时效态Mg-12Gd-4Al-3Li-1Zn-0.5Zr-0.5Ag和Mg-12Gd-6Al-5Li-1Zn-0.5Zr-0.5Ag合金中的晶粒尺寸和c/a比值相比时效态Mg-12Gd-1Zn-0.5Zr-0.5Ag合金有显著的减小,这有利于提高抗拉强度和塑性。时效态Mg-12Gd-6Al-5Li-1Zn-0.5Zr-0.5Ag合金具有最佳的抗拉强度、弹性模量和塑性匹配,其抗拉强度为210 MPa,弹性模量为50.7 GPa,延性率为24.8%。  相似文献   

15.
As-cast microstructure and mechanical properties of Mg-6Zn-2Al-0.3Mn (ZA62) alloys with calcium addition were investigated.The as-cast microstructure of the base alloy ZA62 consists of the α-Mg matrix and eutectic phase Mg51Zn20.The Mg51Zn20 eutectic was gradually replaced by MgZn phase and Mg32(Al,Zn)49 phase when calcium is added into the base alloy.Further addition of calcium leads to the increase of grain boundary phases and formation of a new quaternary Mg-Zn-Al-Ca eutectic compound.In comparison with the base alloy,the increase of calcium addition to the base alloy results in the reduction of both strength and ductility at ambient temperature,but increase at elevated temperatures due to the thermal stability of Ca-containing phases.At elevated temperatures,the creep resistance of ZA62 based alloys containing calcium is significantly higher than that of AZ91 which is the most commonly used magnesium alloy.  相似文献   

16.
Microstructures and mechanical properties of the Mg-4Y-2Gd-0.4Zr alloy with Zn additions have been investigated. The investigation suggests that the mechanical properties of the alloys have been greatly improved after hot extrusion due to the refinement of microstructures, especially the elongations. The extruded Mg-4Y-2Gd-1.0Zn-0.4Zr alloy displays excellent tensile properties. The ultimate tensile strength and the yield tensile strength are 291 and 228 MPa, respectively, with an elongation of 28%. The additions of Zn have an obvious effect on refining microstructure of the extruded alloys, and the vicker hardness increases with increasing Zn additions. The age hardening responses of the extruded alloys have been investigated at 220 °C. These alloys display unobvious ageing hardness responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号