共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stamatis N Parthimos D Griffith TM 《IEEE transactions on bio-medical engineering》1999,46(12):1441-1453
A multilayer perceptron (MLP) network architecture has been formulated in which two adaptive parameters, the scaling and translation of the postsynaptic function at each node, are allowed to adjust iteratively by gradient-descent. The algorithm has been employed to predict experimental cardiovascular time series, following systematic reconstruction of the strange attractor of the training signal. Comparison with a standard MLP employing identical numbers of nodes and weight learning rates demonstrates that the adaptive approach provides an efficient modification of the MLP that permits faster learning. Thus, for an equivalent number of training epochs there was improved accuracy and generalization for both one- and k-step ahead prediction. The applicability of the methodology is demonstrated for a set of monotonic postsynaptic functions (sigmoidal, upper bounded, and nonbounded). The approach is computationally inexpensive as the increase in the parameter space of the network compared to a standard MLP is small. 相似文献
3.
4.
基于混沌时间序列的短期电力负荷预测 总被引:1,自引:0,他引:1
针对电力系统负荷的复杂性及非线性,提出了结合混沌的思想,充分利用数据信息,在重构相空间的基础上对负荷进行预测.结合混沌理论,采用加权一阶局域法建立了电力负荷预测模型,并进行了实际预测,取得了满意的结果. 相似文献
5.
A nonlinear predictive model of speech, based on the method of time delay reconstruction, is presented and approximated using a fully connected recurrent neural network (RNN) followed by a linear combiner. This novel combination of the well established approaches for speech analysis and synthesis is compared with traditional techniques within a unified framework to illustrate the advantages of using an RNN. Extensive simulations are carried out to justify the expectations. Specifically, the network's robustness to the selection of reconstruction parameters, the embedding time delay and dimension, is intuitively discussed and experimentally verified. In all cases, the proposed network was found to be a good solution for both prediction and synthesis 相似文献
6.
7.
《现代电子技术》2019,(14):152-156
语音识别作为人工智能研究中不可或缺的一部分已经逐渐渗透到人们的日常生活中。针对传统语音识别方法不能很好地实现并识别复杂多变、非特定人语音的问题,文中提出利用在时间序列上关联性较强的循环神经网络(RNN)建立语音识别模型。考虑到语音信号丰富的时频信息表达,在特征提取环节进行改进,利用具有较好时频分辨率的小波变换(WT)取代快速傅里叶变换(FFT)作为该模型的输入;然后,采用随时间展开的反向传播算法(BPTT)进行特征学习与训练。在实验测试中,首先,对比分析了基于小波变换的特征提取对识别效果的影响;其次,通过与传统的HMM模型及BP神经网络的识别率做对比,验证RNN神经网络可提高语音识别准确率和稳定性。 相似文献
8.
用于低维混沌时间序列预测的一种非线性自适应预测滤波器 总被引:7,自引:1,他引:7
在二阶Volterra滤波器基础上,提出了一种用于低维混沌时间自适应预测的非线性自适应预测器。基于最小均方误差准则导出了一种NLMS类型的自适应算法来实时调整这种非线性滤波预测器的系数,仿真实验结果表明:这种线性化的非线性自适应滤波预测器能够有效地预测低维混时间序列,且它的模块化特征更易于VLSI电路实现,具有广泛的工程应用价值。 相似文献
9.
混沌神经网络在发电机故障诊断中的应用 总被引:3,自引:0,他引:3
采用耦合的混沌振荡子作为单个混沌神经元构造混沌神经网络模型,采用改进Hebb算法设计网络的连接权值。在此基础上,实现了混沌神经网络的动态联想记忆,并应用该混沌神经网络模型对发电机定子绕组匝间短路故障进行诊断。结果表明,该种方法有助于故障模式的记忆和重现。 相似文献
10.
为了建立更实际的杂散电流预测模型,提出了一种基于BP神经网络的杂散电流腐蚀速度预测,通过构建BP神经网络模型,建立训练样本集,进行网络训练和网络仿真,得到了BP网络模型预测结果。预测结果表明该BP网络模型在埋地金属管道的杂散电流预测中具有一定的应用和推广价值。 相似文献
11.
12.
混沌时间序列的判定方法研究 总被引:3,自引:0,他引:3
在提取时间序列的混沌特征之前,首先要考虑该时间序列是否存在混沌.如果没有经过检验就事先假定实验数据是混沌的,直接用相空间重构理论等方法提取时间序列的特征,进而进行建模和预测,得出的结果是不可信的.围绕混沌系统可以由混沌吸引子的存在诊断,讨论了混沌时间序列的判定方法. 相似文献
13.
14.
针对RGB视频中遮挡物以及其他外界因素对人体动作识别产生影响,以及识别精确度有待提升的问题,提出基于双流独立循环神经网络人体动作识别算法。在提取特征方面,时间网络采用分层IndRNN对时序中3D骨架坐标信息进行特征提取;空间网络采用深层的IndRNN对每个时刻骨架的空间位置关系进行特征提取,其中骨架的空间结构采用了图遍历的方法。对于空间网络和时间网络的特征融合采用加权求和的方式,最后用softmax对动作进行分类。在3D骨架动作数据集(NTU RGB+D)以及交互数据集(SBU Interaction Dataset)上验证了模型的有效性。 相似文献
15.
传统识别模型在进行人体异常行为识别时,无法准确地定位到识别目标的IP地址与目标源.针对此问题,设计了一种基于循环神经网络的人体异常行为识别模型.根据人体异常行为在循环神经网络中的传播方式,计算人体规律性异常行为、重复性异常行为在网络中占用的流量,并通过Lex.net技术提取网络规则,对比人体行为执行规则与循环神经网络规则,描述人体异常行为网络执行规则;同时,引进CNN标记方式,对异常信息进行标记,引入卷积神经网络标记异常信息,将标记结果按照高语义特征与低语义特征,以此实现对行为的有效识别.实验证明,本文设计的识别模型,可以在有限时间内输出所有人体异常行为,并能在完成对异常行为的识别后,追踪到行为对应的目标个体. 相似文献
16.
17.
针对目前混凝土28天强度值的预测需时长、精度低的现状,建立了基于正则化RBF神经网络的混凝土强度预测模型,并运用MATLAB7.13进行仿真实验。实验结果表明该模型综合考虑了影响混凝土强度的各种因素,能够实现非线性关系,具有较高的预测精度,并且训练速度快,可以节约大量的时间、人力、物力和财力,在混凝土强度预测领域具有广泛的应用前景。 相似文献
18.
19.