首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lead-free piezoelectric ceramics have received more attention due to the environmental protection of the earth. (K, Na)NbO3-based ceramics are one of the most promising candidates. Normal sintering of un-doped and Li/Ta co-doped (K, Na)NbO3 ceramics was investigated to clarify the optimal sintering condition for densification, microstructure and electrical properties. It was found that density increased greatly within a narrow temperature range but turned to decrease when the sintering temperature slightly exceeded the optimal one. Piezoelectric properties also showed similar relationship between the density and sintering temperature, but the highest piezoelectric strain coefficients were obtained at the temperatures lower than that for the highest density. The grain growth and property change as a function of sintering temperature were discussed on basis of the formation of liquid-phase and the composition deviation caused by the volatilization of alkali components during sintering.  相似文献   

2.
3.
ZrB2/Zr2Al4C5 composite ceramics with different volume contents of Zr2Al4C5 formed in situ were fabricated by the spark plasma sintering technique at 1800 °C. The content of Zr2Al4C5 was found to have an evident effect on the preparation, phase constitution, microstructure as well as the mechanical properties of ZrB2/Zr2Al4C5 ceramics. The results indicated that sinterability of the composites was remarkably improved by the addition of Zr2Al4C5 compared to the single-phase ZrB2 ceramic. The microstructure of the resulting composites was fine and homogeneous, the average grain size of the ZrB2 decreased, and the average aspect ratio of the Zr2Al4C5 increased with the increase in the amount of Zr2Al4C5. As the content of Zr2Al4C5 increased, both the Vickers hardness and Young's modulus of the composites first increased and then decreased. The fracture toughness of the ZrB2–40 vol% Zr2Al4C5 composite was 4.25 MPa m1/2, which increased by approximately 70% compared to the monolithic ZrB2 ceramic. The improvement was mainly attributed to the toughening mechanisms such as the layered structure toughening, crack deflection and crack bridging, caused by the in situ formed layered Zr2Al4C5 inclusions.  相似文献   

4.
The sintering behavior and dielectric properties of the monoclinic zirconolite-like structure compound Bi2(Zn1/3Nb2/3)2O7 (BZN) and Bi2(Zn1/3Nb2/3−xVx)2O7 (BZNV, x = 0.001) sintered under air and N2 atmosphere were investigated. The pure phase were obtained between 810 and 990 °C both for BZN and BZNV ceramics. The substitution of V2O5 and N2 atmosphere accelerated the densification of ceramics slightly. The influences on microwave dielectric properties from different atmosphere were discussed in this work. The best microwave properties of BZN ceramics were obtained at 900 °C under N2 atmosphere with r = 76.1, Q = 850 and Qf = 3260 GHz while the best properties of BZNV ceramics were got at 930 °C under air atmosphere with r = 76.7, Q = 890 and Qf = 3580 GHz. The temperature coefficient of resonant frequency τf was not obviously influenced by the different atmospheres. For BZN ceramics the τf was −79.8 ppm/°C while τf is −87.5 ppm/°C for BZNV ceramics.  相似文献   

5.
Ferroelectric PZT/xWO3 ceramics (when x = 0, 0.5, 1, 3 and 5 vol%) were fabricated from PZT and nano-sized WO3 powders by a solid-state mixed-oxide method. Phase characterization suggested that the reaction between PZT and WO3 occurred during the sintering. This reaction seemed more pronounced with increasing the content of WO3. The maximum density at approximately 97% of the theoretical value was achieved at 1 vol% of WO3 addition. The grain size was reduced with an addition of WO3 particles from 7.8 μm for PZT to 1.8 μm for 0.5 vol% WO3 and 0.8 μm for 1–5 vol% WO3. Mechanical properties of PZT could be improved with an addition of WO3 nano-particulates. The addition of 0.5 vol% WO3 could maintain good electrical properties while increasing WO3 significantly reduced dielectric and piezoelectric constants of the PZT.  相似文献   

6.
0.25 wt% CuO-doped (Li,K,Na)(Nb,Ta)O3–AgSbO3 lead-free piezoceramics with pure perovskite structure were successfully prepared at a sintering temperature below 1000 °C. The sintering temperature of KNN-based piezoceramics was effectively reduced by about 100 °C due to the enhanced densification process induced by the addition of CuO. Besides, the acceptable sintering temperature window was broadened by the addition of CuO. It is found that the CuO-doped samples show slightly higher tetragonal–orthorhombic phase transition point (TTO) but a lower Curie point (Tc), compared to undoped ones. The KNN-based piezoceramics became “hard” as CuO was added, supported by an increase of Qm. Fairly good electrical properties of d33*=383 pm/V, εr=860, Qm=188 and Tc=215 °C could be obtained in dense CuO-modified KNN-based piezoceramics sintered at 970 °C, demonstrating promising potential in practical applications.  相似文献   

7.
The microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics doped with different Sc2O3 content sintered at 1100 °C were investigated. The results showed that the nonlinear coefficient of the varistor ceramics with Sc2O3 were in the range of 18-54, the threshold voltage in the range of 250-332 V/mm, the leakage current in the range of 0.1-23.0 μA, with addition of 0-1.00 mol% Sc2O3. The ZnO-Bi2O3-based varistor ceramics doped with Sc2O3 content of 0.12 mol% exhibited the highest nonlinearity, in which the nonlinear coefficient is 54, the threshold voltage and the leakage current is 278 V/mm and 2.9 μA, respectively. The results confirmed that doping with Sc2O3 was a very promising route for the production of the higher nonlinear coefficient of ZnO-Bi2O3-based varistor ceramics, and determining the proper amounts of addition of Sc2O3 was of great importance.  相似文献   

8.
Bismuth zinc niobate posses a cubic pyrochlore structure and normally is obtained by the conventional solid-state reaction. The great disadvantage of this method is the lack of chemical homogeneity, requiring high synthesis and sintering temperatures (higher than 1000 °C), which is an impeditive for BZN application in LTCC with silver as the internal electrode. The aim of this paper is to compare, from synthesis to sintering, BZN ceramics, derived either from chemically or conventionally synthesized powders, sintered either in both conventional oven for 2 h or microwave oven for 15 min. The results showed that chemically synthesized BZN ceramics sintered in microwave oven at 900 °C for 15 min presented a relative density of 97%, while those obtained by conventional method required 1000 °C to reach the same density. Despite the short period for thermal treatment in microwave oven, the electrical properties of BZN ceramics are compatible with those sintered in conventional oven for 2 h.  相似文献   

9.
Ca0.28Ba0.72Nb2O6 (CBN28) ceramics with addition of CeO2 and La2O3, were prepared by the conventional ceramic fabrication technique. XRD results showed that the single tungsten bronze structure of CBN28 was not changed by adding CeO2 or La2O3. SEM results indicated that both CeO2 and La2O3 dopants were effective in inhibiting the grain growth and suppressing the anisotropic growth behavior in tungsten bronze structure. It was also found that both two kinds of dopants had remarkable effects on the dielectric and ferroelectric properties of CBN28 ceramics. Compared with CBN28 ceramics, the dielectric constant around room temperature εr, dielectric loss tan δ, the degree of diffuseness γ and coercive field Ec were all ameliorated when doping proper amount of CeO2 or La2O3. The comprehensive electric performance was obtained in CBN28–0.3 wt% CeO2 and CBN28–0.4 wt% La2O3 ceramics. Besides, the underlying mechanism for variations of the electrical properties due to different dopants was explained in this work.  相似文献   

10.
Microwave dielectric properties of 0.85CaWO4–0.15LaNbO4 (CWLN) ceramics were investigated as a function of H3BO3, Li2CO3 content and sintering temperature. With the co-addition of 3.0 wt.% H3BO3–1.0 wt.% Li2CO3, the sintering temperature could be effectively reduced from 1150 °C for pure CWLN ceramics to 900 °C without any degradation of dielectric properties. These results are due to the enhancement of the sinterability of CWLN by liquid phase sintering. For the specimens with H3BO3–Li2CO3 sintered at 900 °C for 3 h, the dielectric constant (K) did not changed remarkably. However, the quality factor (Qf) and the temperature coefficient of resonant frequency (TCF) increased up to y = 1.0 of 3.0 wt.% H3BO3y wt.% Li2CO3, and then decreased due to the formation of the secondary phases. Typically, K of 11.8, Qf of 45,200 GHz and TCF of −23.1 ppm/°C were obtained for the specimens of CWLN with 3.0 wt.% H3BO3–1.0 wt.% Li2CO3 sintered at 900 °C for 3 h.  相似文献   

11.
TaB2-based ceramics were hot pressed in low vacuum with addition of 5-10 vol% MoSi2. Temperatures in the range of 1680-1780 °C led to relative density around 90-95%. The hardness was about 18 GPa, the fracture toughness 4.6 MPa m1/2 and the room temperature flexural strength was around 630 MPa, but abruptly decreased above 1200 °C to 220 MPa. The composite containing 10 vol% of MoSi2 was tested in a bottom-up furnace in the temperature range 1200-1700 °C for 30 min. The microstructure appeared covered by a SiO2 layer, whose thickness increased with the temperature, but the bulk remained unaltered up to 1600 °C. At 1700 °C the specimen vaporized. Nanoindentation was employed on the oxidized cross sections in order to detect eventual mechanical properties modification associated to chemical/microstructural change, like formation of Ta-B-O solid solutions.  相似文献   

12.
Effect of substitution of CuO and WO3 on the microwave dielectric properties of BiNbO4 ceramics and the co-firing between ceramics and copper electrode were investigated. The (Bi1−xCux)(Nb1−xWx)O4 (x = 0.005, 0.01, 0.015, 0.02) composition can be densified between 900 and 990 °C. The microwave dielectric constants lie between 36 and 45 and the pores in ceramics were found to be the main influence. The Q values changes between 1400 and 2900 with different x values and sintering temperatures while Qf values lie between 6000 and 16,000 GHz. The microwave dielectric losses, mainly affected by the grain size, pores, and the secondary phase, are discussed. The (Bi1−xCux)(Nb1−xWx)O4 ceramics and copper electrode was co-fired under N2 atmosphere at 850 °C and the EDS analysis showed no reaction between the dielectrics and copper electrodes. This result presented the (Bi1−xCux)(Nb1−xWx)O4 dielectric materials to be good candidates for LTCC applications with copper electrode.  相似文献   

13.
This study investigated the effects of glass frits on the sintering and mechanical properties of dental 3Y-TZP ceramics. The glass frits, which consisted of MgO, CaO, Al2O3, SiO2, and P2O5, were selected to lower the sintering temperature of zirconia via liquid phase sintering.The results of the experiment showed that these glass frit additives neither destroy the stability of the high temperature t-phase nor induce grain growth. All the mechanical properties and the relative densities were strongly correlated with the addition of glass frits. At lower sintering temperatures, the presence of glass additives resulted in an increase in mechanical properties. At higher sintering temperatures, the presence of glass additives decreased the mechanical properties.  相似文献   

14.
In this work we successfully obtained freeze-cast alumina (Al2O3) and magnesium aluminate spinel (MgAl2O4) samples. Camphene was used as the freezing vehicle in this study. The specimens prepared herein were examined by Archimedes tests, scanning electron microscopy, and X-ray powder diffraction. Cold crushing tests were also carried out at room temperature. It was observed that the pore structure of Al2O3 samples can be tailored by changing the solid loading and freezing rate; the higher the solid loading and freezing rate, the finer the pore structure of the freeze-cast sample. MgAl2O4-based specimens were fabricated by keeping the solid loading in the starting slurry at 30 vol% and using liquid nitrogen as the cooling agent. The material obtained from a 60 Al2O3?40 MgO slurry showed a spinel amount of about 90%, an expressive total porosity (63 ± 3%), and a significant cold crushing strength (58 ± 6 MPa). In addition, this material exhibited the finest pore structure among the composition studied herein, showing a mean pore size of about 4 µm.  相似文献   

15.
Ta-doping K0.5Na0.5Nb1−xTaxO3 (x = 0.1, 0.2, 0.3, 0.4) powder was synthesized by hydrothermal approach and its ceramics were prepared after sintering and polarizing treatment in this work. The K0.5Na0.5Nb0.7Ta0.3O3 ceramics near morphotropic phase boundary (MPB), which exhibited optimum piezoelectric properties of d33 = 210 pC/N and good electromechanical coupling factors of Kp = 0.3. The domain structure has been observed from TEM images which indicates that the K0.5Na0.5Nb0.7Ta0.3O3 ceramics have good piezoelectric and ferroelectric properties for it is near the MPB.  相似文献   

16.
Highly transparent Tm3Al5O12 (TmAG) ceramics were fabricated by solid-state reaction and vacuum sintering. Densification, microstructure evolution, mechanical, thermal, and optical properties of the TmAG ceramics were investigated. Fully dense TmAG ceramic with average grain size of 15 μm was obtained by sintering at 1780 °C for 20 h. The in-line transmittance was 80.5% at 2000 nm. The absorption coefficients at 682 nm and 785 nm were 8.03 cm−1 and 8.33 cm−1, respectively. The Vickers hardness, the Young modulus, the bending strength, and the fracture toughness values were 15.14 GPa, 343 GPa, 230 MPa, and 2.35 MPa m1/2, respectively. The thermal conductivity at room temperature was 3.3 W/m K and the average linear thermal expansion coefficient from 20 °C to 1000 °C was 8.915 × 10−6 K.  相似文献   

17.
Samples of Nb2O5 were prepared by laser floating zone (LFZ) technique and by solid-state reaction in order to study some of their physical properties as a function of synthesis conditions. Single crystals fibres were obtained by LFZ, while a structural orthorhombic to monoclinic phase transition was observed in samples sintered at temperature higher than 800 °C. Transmission optical spectroscopy and photoconductivity measurements allowed identifying a ∼3.2 eV bandgap energy for the H-Nb2O5 monoclinic crystalline phase. Band gap shrinkage of ∼100 meV was observed from 14 K to RT. For the orthorhombic phase (T-Nb2O5), the photoconductivity measurements evidence a higher energy bandgap. The sintered samples have shown a broad recombination luminescence band at the orange/red spectral region while no luminescence was detected from the LFZ grown fibres. A dielectric constant of ∼40 was found for the 800 °C and 1200 °C sintered pellets while that of 1000 °C reached four times that value.  相似文献   

18.
The W-doped Nb4AlC3 ceramics [(Nb1-xWx)4AlC3, x?=?0–0.0375] were successfully fabricated by in-situ reactive hot-press-aided method using elemental niobium, aluminum, graphite and tungsten powders. The XRD results suggest that the matrix phase (Nb1-xWx)4AlC3 and the second phase (Nb1-xWx)C were simultaneously formed when W was added. The SEM images show that (Nb1-xWx)C is dispersed in the W-doped Nb4AlC3 ceramics matrix. The mechanical properties of Nb4AlC3 were greatly enhanced by W doping. Typically, the (Nb0.975W0.025)4AlC3 exhibits the highest flexural strength (483?±?21?MPa), fracture toughness (8.5?±?0.3?MPa?m1/2) and Young′s modulus (382?±?18?GPa) at room temperature (RT), which are increased by 59%, 15% and 30%, respectively, compared with the present Nb4AlC3. The Vickers hardness of (Nb0.9625W0.0375)4AlC3 (4.8?±?0.2?GPa) is 92% higher than that of Nb4AlC3. The (Nb0.975W0.025)4AlC3 also retains a high flexural strength of 344?±?4?MPa at 1400?°C (71% of RT value), which is much higher than the RT flexural strength (303?±?22?MPa) of the present Nb4AlC3. The strengthening effect is attributed to the solid solution of W and the incorporation of the second phase (Nb1-xWx)C. The excellent mechanical properties endow the W-doped Nb4AlC3 ceramics as promising high-temperature structural materials.  相似文献   

19.
Ceramic compositions of a combination between lead magnesium niobate, Pb(Mg1/3Nb2/3)O3, and lead titanate, PbTiO3, were fabricated using the Mg4Nb2O9 precursor technique. Their electrical properties with respect to temperature and frequency were examined and the effect of sintering conditions on phase formation, densification, microstructure and electrical properties of the ceramics were examined. It has been found that optimisation of sintering conditions can lead to a highly dense and pyrochlore-free PMN–PT ceramics. The gradual decrease of the physical properties of the sintered ceramics was related to the gradual decrease of density and inhomogeneous microstructure. The results also revealed that for the lower concentration of lead titanate, a relaxor behaviour is noticed with a high electrostrictive effect, which was almost hysteretic free. However, higher amount of lead titanate led to a normal ferroelectric behaviour.  相似文献   

20.
In this study, the effect of bismuth content on the crystal structure, morphology and electric properties of barium bismuth niobate (BaBi2Nb2O9) thin films was explored with the aid of X-ray diffraction (XRD), scanning electron microcopy (SEM), atomic force microscopy (AFM) and dielectric properties. BaBi2Nb2O9 (BBN) thin films have been successfully prepared by the polymeric precursor methods and deposited by spin coating on Pt/Ti/SiO2/Si (1 0 0) substrates. The phase formation, the grain size and morphology of the thin films were influenced by the addition of bismuth in excess. It was observed that the formation of single phase BBN for films was prepared with excess of bismuth up to 2 wt%. The films prepared with excess of the bismuth showed higher grain size and better dielectric properties. The 2 wt% bismuth excess BBN thin film exhibited dielectric constant of about 335 with a loss of 0.049 at a frequency of 100 kHz at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号