首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
L波段色散补偿光子晶体光纤的研究和设计   总被引:1,自引:1,他引:0  
梁丹华  侯蓝田  王伟  刘兆伦 《半导体光电》2009,30(4):590-594,628
利用多极法对一种新颖结构的双层芯光子晶体先纤的色散特性进行了数值模拟,找出色散随结构变化的规律.通过合理选取其外层芯的层数,同时优化孔间距和空气孔直径,设计出可用于L波段进行宽带色散补偿的光子晶体光纤,此光纤色散值在-310~-260 ps/(km·nm)之间近似线性变化,残余有效色散系数近似为零,相关色散斜率(RDS)在0.003 2 nm-1的色散补偿光纤,其RDS值与标准单模光纤匹配,有效模场面积优于常规色散补偿光纤,可以对宽带传输的标准单模光纤实现良好的色散补偿.  相似文献   

2.
设计了一种新颖结构的双层芯色散补偿光子晶体光纤。此光纤在整个C波段具有高负色散特性。通过合理选取双层芯光纤的外层芯层数,同时优化孔间距和空气孔直径,设计的光纤在C波段的色散值在-520ps/(km.nm)和-390ps/(km.nm)之间近似线性变化,残余有效色散系数近似为零,相关色散斜率(RDS)在0.0032nm-1的色散补偿光纤,其RDS值与标准单模光纤匹配,有效模场面积优于常规色散补偿光纤,可以对其长度30倍以上、用于宽带传输的标准单模光纤进行良好的色散和色散斜率补偿。  相似文献   

3.
随着因特网的普及,人们对通信容量的需求在迅速增加。为了满足人们对通信容量不断增长的需求,一些新的通信技术和设备应运而生。密集波分复用技术的诞生大大提高了单根光纤的通信容量,现在已经成为人们提高光纤通信容量的重要手段。而采用该技术去提升光纤的通信容量需要从两方面着手一方面是增加光纤的波分复用的信道数目,另一方面是提高单个信道的传输速率。由于受光纤性能和光学设备性能的限制,目前单纯地提高单个信道的传输速率已经越来  相似文献   

4.
提出并证明了一种宽光谱被动锁模掺铒光纤激光器,为光学频率梳和光纤飞秒脉冲的产生奠定了基础。该激光器基于非线性偏振旋转的锁模机理,同时在大的正常色散区合理地将C波段和L波段掺铒光纤结合,确保激光器具有C+L波段的增益谱覆盖。当泵浦功率为350mW时,脉冲稳定的以基频4.32MHz运转,3dB带宽为60nm,20dB覆盖了1522~1630nm,实现了增益带宽内光谱的完全覆盖。这种利用增益拼接加宽光谱的方法可以有效避免光谱成分的非线性相位噪声,并且有利于进一步压窄脉冲。  相似文献   

5.
高性能低成本的C+L波段掺铒光纤光源   总被引:1,自引:0,他引:1       下载免费PDF全文
习聪玲 《激光技术》2012,36(1):138-140
为了得到一种高性能的C+L波段的宽带掺铒光纤光源,用一个980nm和一个1480nm激光二极管作为抽运源,用两个3dB宽带耦合器作为光纤反射镜,同时利用功率控制电路让光源输出光稳定,对设计的光源进行了实验和理论验证,获得了功率为168.67mW(22.27dBm)、带宽达到80.701nm(1525.112nm~1605.813nm)的C+L波段宽带光源。结果表明,开始用两个980nm和一个1480nm二极管作为抽运源,之后改为一个980nm和一个1480nm二极管作为抽运源,并没有减少光源的输出功率,也没有改变稳定性。这一结果对减少光源的成本、提高光光转换效率,具有实际价值。  相似文献   

6.
大容量超长距离(ULH)传输是一种非常有应用前景的技术,文章介绍160×10Gbit/s系统在实际的3040kmG.652光纤上传输的试验情况.系统应用在C L波段,波道间隔为50GHz,线路发送采用CS RZ码,线路速率10.7Gbit/s,利用拉曼放大器的宽带特性,同时对C L波段进行色散补偿,使系统成本比分波段进行色散补偿大为降低.试验结果:经3040km传输后,Q值>4.29,光信噪比>15dB,光通道代价<3.5dB,连续24h无误码.  相似文献   

7.
提出并论证了一种新的低噪声系数C+L波段掺铒光纤放大器的结构.在该结构中,利用一个前置放大器以减少噪声系数,并利用一个带有光纤布拉格光栅的双通结构以增加L波段增益,同时减少噪声系数.实验结果表明,新宽带放大器的噪声系数减小了约2 dB,并且在1 525~1 605 nm波长范围内,增益提高到了25 dB以上.  相似文献   

8.
在参考大量国外文献的基础上,介绍了三类对光纤传输线路中色散与色散斜率同时进行补偿的方法,并将每类补偿方法又细分成几种.  相似文献   

9.
本文考察了色散补偿光纤(DCF)应用的基本原理,包括品质因数的定义和色散斜率补偿的条件。从理论和试验两方面研究了三包层折射率分布结构的主要设计特点。介绍了三种类型DCF的生产结果。结果表明,把振荡扭绞用于光纤能够减少偏振模色散。并证实,采用一种特殊的中间光纤可以降低DCF和标准光纤之间的接续损耗。本文比较了测量DCF非线性有效面积的两种方法,结果很吻合。此外还报道了非线性折射率n2的测量结果。发现  相似文献   

10.
11.
基于啁啾光纤光栅色散补偿问题的思考   总被引:1,自引:0,他引:1  
色散已成为光纤长距离、高速率通信中的巨大障碍.鉴于色散补偿光纤插入损耗大、易引入非线性效应等缺点,文章采用啁啾光纤光栅对系统进行色散补偿,克服了以上不足.通过分析啁啾光纤光栅色散补偿的原理,结合理论分析,提出在多通道波分复用系统中使用啁啾光纤光栅,以实现长距离无中继传输.  相似文献   

12.
高速光通信系统中的色散补偿技术   总被引:8,自引:0,他引:8  
朱震 《电光与控制》2003,10(2):51-54
高速光纤通信系统中,色散补偿和极化模色散补偿是提高信噪比、改善系统性能的必要手段。本文介绍了几种常用商用传输光纤及其色散特性,分析了相应的色散补偿技术,重点分析了其中普遍采用的色散补偿光纤技术。  相似文献   

13.
光传输系统中色散补偿问题的探讨   总被引:1,自引:0,他引:1  
文章通过对光纤色散的产生及其对传输系统影响的介绍,引出了色散补偿技术.在多种色散补偿方法中,侧重探讨了应用比较普遍的色散补偿光纤(DCF)技术,并在此基础上,联系实际工程,具体阐述了光纤色散补偿模块大小在工程中如何计算、如何配备、如何放置等,获得了一些对实际色散补偿系统有参考价值的结论.  相似文献   

14.
对于高比特率的光纤通信系统,由温度或功率变化导致的色散波动高于系统的色散容限。因此,色散补偿单元必须具备动态可调谐功能才能适应下一代光通信网络发展的需要。本文介绍了几种动态可调谐补偿技术的基本原理性能特点及其国内外研究情况,其中包括啁啾光纤光栅法、虚像相位阵列法、G-T干涉仪法、阵列光纤光栅法和平面光波导法,并且简要讨论了可调谐色散补偿技术今后的发展方向。  相似文献   

15.
杨敏  夏锴 《信息技术》2013,(9):32-34
从光脉冲在光纤中的传输过程分析着手,在理论和数值模拟两方面研究了光子晶体光纤的色散补偿特性作用。结果表明,利用光子晶体光纤进行色散补偿时,光子晶体光纤要选择合适的二阶色散系数,同时脉冲的输入峰值功率对其色散补偿也有影响,为保证补偿后脉冲的质量,补偿用光纤的长度尽量小。  相似文献   

16.
WDM+EDFA+DCF光纤传输系统中色散补偿方案的分析   总被引:4,自引:0,他引:4  
由于在WDM+EDFA光纤传输系统中使用常规单模光纤(SMF)在1550nm窗口的大色散限制了传输距离,采用色散补偿光纤(DCF)进行色散补偿是上前一种较为理想的方法。本文基于光纤WDM+EDFA+DCF的长距离传输系统,讨论了DCF色散补偿对光纤非线性效应交叉相位调制和四波混频(FWM)的影响,提出了采用DCF集总、后置、非完全补偿的色散补偿方案,这种方案可合系统具有更佳的传输性能。  相似文献   

17.
超高速光纤通信中的色散补偿技术   总被引:4,自引:0,他引:4  
余重秀  贾信东   《激光杂志》1999,20(4):40-42
本文研究了光纤通信网中的色散及其补偿方法,对主要的几种色散补偿技术的机制,特点及春实现方法进行了分析,比较,并讨论了光纤的色散补偿实用技术。  相似文献   

18.
光脉冲色散展宽的光纤光栅透射补偿   总被引:2,自引:0,他引:2  
分析讨论了利用变迹均匀光纤光栅的透射色散对光纤中传输的脉冲色散展宽进行压缩补偿。给出了啁啾高斯脉冲的补偿原理,计算了相关的曲线和光纤光栅的相应参数。通过选择光纤光栅的不同参数,可以使色散展宽的高斯脉冲经光栅后几乎完全恢复原状或受到进一步压缩。  相似文献   

19.
曹雪 《激光技术》2014,38(1):101-104
为了优化光纤通信系统色散补偿方案,采用软件仿真的方法设计了一个用色散补偿光纤进行色散补偿的单信道通信系统,利用光纤环形镜的全反射特性使该系统的色散补偿方案得到了优化,补偿效果良好,并节约了成本。对色散补偿及光纤环形镜的工作原理进行了理论分析和仿真验证,取得了系统在2.5Gbit/s和10Gbit/s下Q参量和眼图的仿真数据,分别找出了两个信号速率下的系统最佳输入功率。结果表明,系统在2.5Gbit/s下的最佳输入功率为13dBm,此时Q参量达到了172.88;系统在10Gbit/s下的最佳输入功率为6dBm,其相应Q参量为45.96。这一结果对实际应用中光纤通信系统的色散补偿是有帮助的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号