首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of neonatal treatment with the pyrethroid insecticide cypermethrin ((R,S)alpha-cyano-3-phenoxybenzyl (1R,S)-cis-trans-3-(2,2-dichloro-vinyl)-2,2-dimethylcyclopropane carboxylate) on postnatal development of renal dopamine receptors was investigated by radioligand binding assay techniques. Treatment with cypermethrin was made on rats from the 10th to the 16th day after birth. Dopamine D1- and D2-like receptors were assayed in frozen sections of kidney of 21-, 30-, 60- and 90-day-old rats using as ligands of dopamine D1- and D2-like receptors [3H]([R](+)-(chloro-2,3,4,5,-tetrahydro-5-phenyl-1,4,-benzazepinal hemimaleate) (SCH 23390) and [3H]spiperone, respectively. Treatment with cypermethrin was without effect on the affinity (Kd value) or the density (Bmax value) of dopamine D1- and D2-like receptors of rats of 21 days of age. In older groups, treatment with the compound reduced the affinity and increased the density of dopamine D1-like receptors, whereas it was without effect on the affinity of dopamine D2-like receptors and decreased their density. These findings indicate that neonatal treatment with the pyrethroid insecticide cypermethrin induces long-lasting impairment of renal dopamine D1- and D2-like receptors and that kidney is a target of the toxic action of the compound. Renal dopamine receptor changes caused by cypermethrin are consistent with possible alterations of renal tubular function and of sympathetic neuroeffector modulation. The above data suggest also that, different from the adult, neonatal exposure to pyrethroid insecticides may induce toxic effects.  相似文献   

2.
Eight dopamine receptor-like cDNA clones were isolated from the carp (Cyprinus carpio) retina and four dopamine receptor-like cDNA clones were isolated from the European eel (Anguilla anguilla) retina. These cDNA clones show high sequence and structural homology to the known dopamine receptor subtypes. The sequence similarity and phylogenetic analysis revealed that five subtypes (D1A3, D1A4, D1B, D1C and D1X) in the carp retina and four subtypes (D1A1, D1A2, D1B and D1C) in the eel retina are D1-like receptor subtypes, and three (D2, D4A and D4B) in the carp retina are D2-like receptor subtypes; no D2-like receptor was found in the eel. Carp D1A3 and D1A4, carp D4A and D4B, and eel D1A1 and D1A2 are highly homologous pairs of receptors which show significant, domain-specific differences to each other and to their species homologues. The structure of the third cytoplasmic loop in the carp D1X receptor was particularly different from the other D1-like receptors. The implications of these structural differences in terms of dopamine receptor activation and signalling are discussed. It is suggested that the known diverse physiological and pharmacological effects of dopamine on the retinal neurones are likely to be mediated through these multiple receptor subtypes which may be coupled to different signal transduction pathways.  相似文献   

3.
The role of the dopamine D3 receptor subtype in the central nervous system is still not well understood. It has a distinct and restricted distribution, mostly associated with limbic territories of the striatum (olfactory tubercle and the shell of nucleus accumbens) in rat brain. Dopaminergic denervation induced by a 6-hydroxydopamine lesion of the nigrostriatal system in rat down-regulates the expression of the D3 receptor. In the present study, we investigated the functional neuroanatomy of the dopamine D3 receptor subtype in the monkey (Macaca fascicularis) basal ganglia. We also studied the effect of administration of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and chronic D1-like (SKF 82958) or D2-like (cabergoline) agonist treatments on dopamine D3 receptor levels using receptor autoradiography. Our results clearly show that the distribution of D3 receptors in the monkey is more closely related to associative and limbic components of the striatum (caudate-putamen), as compared with its sensorimotor counterpart. Hence, D3 receptors may be more specifically involved in cognitive and motivational aspects of striatal functions, which are elaborated in prefrontal, temporal, parietal, cingulate and limbic cortices. Moreover, MPTP administration significantly decreased levels of D3 receptors and this effect was reversed or compensated by a chronic treatment with a D1-like, but not a D2-like, receptor agonist. The D3 receptor may represent an important target for adjunct or direct therapy designed to improve cognitive deficits observed in patients with Parkinson's disease, schizophrenia and other illnesses with frontal lobe cognitive disturbances.  相似文献   

4.
Receptor binding autoradiography, using the selective ligand [3H]7-OH-(R)DPAT (R(+)-2-dipropylamino-7-hydroxy 1,2,3,4-tetrahydronaphthalene), showed that piribedil is a potent inhibitor at dopamine D3 receptors in limbic regions (island of Calleja), with affinity (IC50) between 30 and 60 nM. The in vitro IC50 of piribedil for inhibition of [3H]spiperone binding to receptors of the dopamine D2-like family (D2, D3 and D4), ranged between 10(-7) and 10(-6) M in different brain regions (medial and lateral caudate putamen, olfactory tubercles, and nucleus accumbens). At the highest concentration tested (10(-5 M) piribedil inhibited dopamine D1 receptor binding by < 50%. It is concluded that piribedil has 20 times higher affinity for dopamine D3 than for dopamine D2-like receptors, and very low affinity for the dopamine D1 receptor subtype in rat brain. How this pattern of receptor affinity is related to the pharmacological profile of piribedil deserves further investigation.  相似文献   

5.
Renal dopamine has been proposed to be involved in the regulation of glomerular filtration rate (GFR). Because inhibition of dopamine D2 receptors abolishes the renal hyperfiltration due to amino acid load, we tested the hypothesis that pharmacological activation of D2-like receptors mimicked this renal response. In anesthetized rats, quinpirole (0.3 microgram . 100 g-1 . min-1), an agonist for receptors of the D2-like family, caused an increase in GFR by 20 +/- 2%, which corresponded to that provoked by infusion of an 10% amino acid solution. The D2 receptor antagonist S(-)-sulpiride that acts both centrally and peripherally completely abolished the renal hemodynamic response to quinpirole and to amino acids whereas domperidone, a peripherally acting D2 receptor antagonist, inhibited this hyperfiltration only in part. Urinary dopamine excretion increased in response to amino acid infusion whether GFR increased or not. We conclude that, in anesthetized rats, dopamine D2 receptors contribute to the amino acid-induced hyperfiltration and that both central and peripheral receptors might be involved, whereas dopamine excreted into the urine does not appear to play a functional role in this renal hemodynamic response.  相似文献   

6.
It has recently been shown that the external carotid vasoconstrictor response to 5-HT in the dog is primarily mediated by sumatriptan-sensitive 5-HT1-like receptors; however, the fact that these receptors are not blocked by metergoline, a 5-HT1D ligand, raises questions about their possible correlation with the 5-HT1D receptor subtype. Since a number of drugs display high affinity for the 5-HT1D (GR127935) and 5-HT1F (e.g. methysergide and oxymetazoline) receptor subtypes, in this study we have used these drugs to determine whether the above vasoconstrictor 5-HT1-like receptors correlate with the 5-HT1D and/or 5-HT1F receptor subtypes. One-minute intracarotid infusions of 5-HT (0.3-30 micrograms/min), sumatriptan (1-30 micrograms/min), oxymetazoline (0.03-3 micrograms/min) and noradrenaline (0.3-3 micrograms/min) resulted in dose-dependent decreases in external carotid blood flow without changes in arterial blood pressure or heart rate. These vasoconstrictor responses remained unaltered after i.v. administration of physiological saline (0.015, 0.05 and 0.15 ml/kg; n = 4) or ritanserin (1 mg/kg; n = 5). In contrast, GR127935 (1, 3 and 10 micrograms/kg, n = 6) potently blocked the responses to 5-HT (unmasking a dose-dependent vasodilator component) and sumatriptan without affecting those to oxymetazoline or noradrenaline. Interestingly, methysergide (10, 30 and 100 micrograms/kg, n = 5) also blocked the vasoconstrictor responses to 5-HT and sumatriptan, but unlike GR127935, did not revert the vasoconstrictor response to 5-HT; the responses to oxymetazoline remained unaffected, but those to noradrenaline were apparently attenuated by the highest dose. Taken together, the above findings suggest that the sumatriptan-sensitive 5-HT1-like receptors mediating canine external carotid vasoconstriction resemble 5-HT1D receptors, probably of the 5-HT1D beta subtype on the basis of the resistance to blockade by ritanserin. The pharmacological profile of these receptors could be similar (bovine and human cerebral arteries, porcine carotid arteriovenous anastomoses and human coronary arteries) to other putative 5-HT1D receptors mediating vascular responses.  相似文献   

7.
Stimulation of a D4-like dopamine (DA) receptors inhibits a cAMP-dependent increase in serotonin N-acetyltransferase activity and melatonin biosynthesis in the chick retina. In order to gain more insight into the molecular mechanisms underlying this suppressive action of DA, the effects of selective stimulation of the D2-family of DA receptors (including the D4-subtype) on cAMP formation were examined in chick retina using two experimental approaches: measurements of adenylyl cyclase activity in retinal homogenates, and cAMP accumulation in eye cup preparation prelabeled with [3H]adenine. The DA-sensitive adenylyl cyclase system is well expressed in chick retina. DA increased both basal and forskolin-stimulated adenylyl cyclase activity. This effect of DA was antagonized by SCH 23390 (a blocker of D1-family of DA receptors) and not affected by sulpiride (a D20-family blocker). Incubation of retinal homogenates with quinpirole (a predominant agonist of D3/D4 DA receptor subtypes) did not produce any major changes in adenylyl cyclase activity. On the other hand, activation of D4-like DA receptor subtype by quinpirole decreased forskolin-stimulated cAMP formation in intact chick retina maintained in "eye-cup" preparations. It is suggested that D4-like DA receptors regulating melatonin biosynthesis in chick retina may be indirectly linked to the cAMP generating system.  相似文献   

8.
The dopamine D4 receptor is a G protein-coupled receptor (GPCR) that belongs to the dopamine D2-like receptor family. Functionally, the D2-like receptors are characterized by their ability to inhibit adenylyl cyclase. The dopamine D4 receptor as well as many other catecholaminergic receptors contain several putative SH3 binding domains. Most of these sites in the D4 receptor are located in a polymorphic repeat sequence and flanking sequences in the third intracellular loop. Here we demonstrate that this region of the D4 receptor can interact with a large variety of SH3 domains of different origin. The strongest interactions were seen with the SH2-SH3 adapter proteins Grb2 and Nck. The repeat sequence itself is not essential in this interaction. The data presented indicate that the different SH3 domains in the adapter proteins interact in a cooperative fashion with two distinct sites immediately upstream and downstream from the repeat sequence. Removal of all the putative SH3 binding domains in the third intracellular loop of the dopamine D4 receptor resulted in a receptor that could still bind spiperone and dopamine. Dopamine could not modulate the coupling of these mutant receptors to adenylyl cyclase and MAPK, although dopamine modulated receptor-G protein interaction appeared normal. The receptor deletion mutants show strong constitutive internalization that may account for the deficiency in functional activation of second messengers. The data indicates that the D4 receptor contains SH3 binding sites and that these sites fall within a region involved in the control of receptor internalization.  相似文献   

9.
Dopamine D2-like receptors (D2, D3, and D4) are major targets for action of typical and atypical neuroleptics, commonly used in the treatment of schizophrenia. To understand their individual functional contribution, subtype-selective anti-peptide antibodies were raised against D2, D3, and D4 receptor proteins. The antibodies were shown to be specific on immunoblots of rat brain membranes and immunoprecipitated the solubilized native dopamine receptors in an antibody concentration-dependent manner. In addition, they also bind selectively to the respective recombinant D2, D3, and D4 receptor membrane proteins from cDNA transfected cells. Immunolocalization studies show that the D2-like receptor proteins had differential regional and cellular distribution in the cerebral cortex, hippocampus, basal ganglia, cerebellum, and midbrain, thus providing anatomical substrate for area-specific regulation of the dopamine neurotransmission. In cortical neurons, D4 receptor protein was found in both pyramidal and nonpyramidal cells, whereas D2 and D3 seem to be mostly associated with nonpyramidal interneurons. In rat hippocampus, the expression pattern of D2-like receptors (D4>D3>D2) mirrored that obtained with immunoprecipitation studies. D2 and D4 receptor immunolabeling was observed in the thalamic reticular nucleus, which was negative for the D3 subtype. Species differences were also observed; for example, the D4 subtype receptor is the most highly expressed protein in the rat cortex, whereas it is significantly less in human cortex. Differential patterns of D2, D3, and D4 receptor expression in rat and human brain should shed light on the therapeutic actions of neuroleptic drugs and may lead to the development of more specifically targeted antipsychotic drugs.  相似文献   

10.
11.
The identification of a novel dopamine receptor subtype, referred to as the D4 receptor, which binds the atypical antipsychotic drug clozapine with high potency, has led to the initiation of a drug discovery program that aims to find novel inhibitors of this receptor subtype. A selective screening strategy was utilized, in which 4500 compounds chosen on the basis of structural similarities to known biogenic amine receptor antagonists were tested against both the D4 and D2 dopamine receptor subtypes. A potent D4-selective compound was discovered.  相似文献   

12.
Previous film autoradiographic studies demonstrated that, during corticogenesis, dopamine receptors of the D1 class are abundant in the embryonic primate cerebral wall. In the present study, we expand these findings by identifying the cellular elements of the fetal occipital cerebral wall expressing D1 and D5 subtypes of the D1 dopamine receptor class. We have examined tissue from monkey fetuses collected at 70, 90 and 120 days of gestation using antibodies directed against C-termini of the D1 and D5 dopamine receptors. At all three embryonic ages studied, we found D1 and D5 receptors expressed by multiple cell types of the embryonic cerebral wall. Both D1 and D5 receptor proteins are produced by pyramidal neurons of the cortical plate and by a variety of interstitial neurons of the subplate and intermediate zones. D1 and D5 receptors are also present in cells of the proliferative ventricular and subventricular zones, some of which were identified as dividing cells. In addition, D1 and D5 receptors are detectable in the protoplasmic astroglial and ependymal cells distinguishable in monkey fetuses collected at 120 days of gestation. Some cellular elements of the embryonic monkey cerebral wall express only one subtype of the D1 dopamine receptor class. For example, embryonic Cajal-Retzius neurons in the marginal zone and migrating neurons in the intermediate zone are immunoreactive only to D5 antisera. In contrast, radial glia can be labeled only with D1 receptor-specific antisera. Finally, only D1 receptors are detectable in the blood vessels penetrating the embryonic monkey cerebral wall. Based on these observations, we propose that dopamine receptors of the D1 class play an important role in regulating cerebral cortical formation and that D1 and D5 receptor subtypes may participate in regulation of different aspects of this process.  相似文献   

13.
An assessment of the genetic toxicology of antimony trioxide   总被引:1,自引:0,他引:1  
Dopamine receptor expression in human fetal forebrain (between 6 and 20 weeks of gestation) was measured using tissue-slice receptor autoradiography with the D1-like and D2-like antagonists [3H]-SCH23390 and [3H]-YM09151-2, respectively. Tissue sections were assayed in saturation studies and examined for age- and sex-related changes in Bmax. We made the following observations: (1) the ages at which D1- and D2-like receptors were first expressed in whole forebrain sections could be reliably identified but were not significantly different from one another (gestational age 65 days for D1- vs. 72 days for D2-like receptors); (2) age-related increases in both D1- and D2-like receptors were demonstrated in forebrain and, from the middle of the first to the middle of the second trimester, the Bmax for each ligand increased by an order of magnitude after the onset of the specific binding site's expression; (3) age-related increases in D1-like receptors, but not D2-like receptors, could be demonstrated in cortex; and, (4) in one case of trisomy 18, the Bmax for [3H]-SCH23390 was significantly elevated above the 95% confidence interval when compared to an age-regressed normal sample. Although D2-like receptor density significantly increased with age in forebrain, age-regressed changes in D2-like receptor expression in cortex and striatum did not reach statistical significance. Likewise, a comparison of the mean Bmax's by sex for both ligands in midgestational striatum failed to reach significance. These data corroborate the findings of other investigators who have delineated the ontogeny of dopaminergic systems in other animal species. The regional differences in the expression of dopamine receptor families may be relevant to the role which dopamine may play during normal gestational brain development. Moreover, significant deviations in dopamine receptor expression during gestation (as seen in this one case of trisomy 18) may signify underlying pathological processes that ultimately are manifested by abnormal psychological development and/or cognitive functioning.  相似文献   

14.
Loss of nigrostriatal neurons leads to striatal dopamine deficiency and subsequent development of parkinsonism. The effects of this denervation on D2-like receptors in striatum remain unclear. Most studies have demonstrated increases in striatal dopamine D2-like receptors in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated denervation, but others have found either decreases or no change in binding. To clarify the response to denervation, we have investigated the time-dependent changes in dopamine D2, D3, and D4 receptor protein and mRNA levels in unilaterally MPTP-lesioned baboons. MPTP (0.4 mg/kg) was infused into one internal carotid artery, producing a contralateral hemi-parkinsonian syndrome. After MPTP treatment, the animals were maintained for 17-480 d and then euthanized. MPTP decreased ipsilateral dopamine content by >90%, which did not change with time. Ipsilateral D2-like receptor binding in caudate and putamen initially decreased then increased two- to sevenfold over the first 100 d and returned to near baseline levels by 480 d. Relative levels of D2 mRNA were essentially unchanged over this period. D4 mRNA was not detected. In contrast, D3 mRNA increased sixfold by 2 weeks and then decreased. At the peak period of increase in binding sites, all D2-like receptors were in a micromolar affinity agonist-binding state, implying an increase in uncoupled D2 but not D3 receptor protein. Taken together, these data suggest that MPTP-induced changes in D2-like dopamine receptors are complex and include translational or post-translational mechanisms.  相似文献   

15.
Four subtypes of adenosine receptors have recently been cloned from thyroid, brain and testis. In this review we have summarised properties of these purinergic receptors. The cloned A1 and A2 subtypes are probably similar or identical to receptors that exist on cardiac and vascular tissues, respectively. A comparison of the amino acid sequences of A1, A2a, and A2b receptors reveals several stretches of conserved amino acids that are unique to adenosine receptors, primarily in the membrane spanning regions. Species differences in A1 receptors indicate that minor changes in receptor structure can produce marked changes in ligand binding properties and may facilitate the identification of amino acids involved in ligand recognition. A confusing A1 receptor subclassification system of putative A1a, A1b, and A3 subtypes has emerged based on subtle rank order potency differences for various ligands among tissues. cDNAs corresponding to these A1 subtypes have not yet been isolated. Atrial A1 receptors activate K+ channels and inhibit adenylyl cyclase. These two pathways appear to be independently up and down regulated, suggesting the existence either of atrial A1 receptor subtypes or of differential regulation of the coupling of a single receptor to distinct GTP binding proteins. An adenosine receptor distinct from A1 and A2 receptors has been cloned from testis and designated TGPCR, or A3, although it differs from the pharmacologically defined A3 receptor. We suggest that the current A1/A3 receptor subtype nomenclature be abandoned and superseded by a nomenclature based solely on receptor cDNAs. In addition to the cloned adenosine receptors, a novel A4 subtype has been proposed based on pharmacological and electrophysiological criteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We provide evidence that dopamine receptors differentially modulate tyrosine hydroxylase and aromatic L-amino acid decarboxylase in the mouse striatum. The dopamine D1 receptor family (D1-like) antagonist, R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1 H-3-benazepine (SCH 23390), elevated aromatic L-amino acid decarboxylase activity and protein content in striatum, as well as the mRNA for the enzyme in midbrain. The dopamine D1-like receptor agonist, (+/-)-1-phenyl-2,3,4,5-tetrahydro-(1 H)-3-benzazepine-7,8-diol (SKF 38393), had no effect on aromatic L-amino acid decarboxylase. The dopamine D1-like drugs had no effect on tyrosine hydroxylase. In contrast, the dopamine D2 receptor family (D2-like) antagonists haloperidol and spiperone elevated both tyrosine hydroxylase and aromatic L-amino acid decarboxylase activities. The increase in aromatic L-amino acid decarboxylase activity was accompanied by elevated enzyme protein content but not mRNA. The dopamine D2-like receptor agonists, bromocriptine, quinpirole and (+/-)-7-hydroxydipropylaminotetralin (7-OH-DPAT), all decreased striatal tyrosine hydroxylase. Under the conditions used, bromocriptine and 7-OH-DPAT, but not quinpirole, decreased aromatic L-amino acid decarboxylase activity of striatum. Both the dopamine D1- and D2-like receptor antagonists enhanced the turnover of striatal dopamine to differing degrees, as judged by the ratio of acid metabolites of dopamine to dopamine. Taken together our results indicate that aromatic L-amino acid decarboxylase can be modulated independently of tyrosine hydroxylase.  相似文献   

17.
The actions of dopamine are mediated by specific, high-affinity, G protein-coupled receptors. Multiple subtypes of dopamine receptors have been characterized, including the D2 subtype (D2R). Cells within the dorsal root and petrosal ganglia of the rat express D2R messenger RNA (mRNA) consistent with D2R expression by primary sensory neurons. We hypothesized that neurons of the trigeminal ganglion express D2R mRNA. Total cellular RNA from rat trigeminal ganglia was analyzed on Northern blots under high stringency conditions. Hybridization of trigeminal ganglion RNA resulted in a signal which comigrated with striatal, pituitary, and hypothalamic D2R mRNA. To determine the distribution of D2R expressing cells in the trigeminal ganglion, cryostat sections were analyzed by in situ hybridization followed by emulsion autoradiography. We identified a population of clustered cells labeled with dense grain concentrations over their cytoplasms. These findings demonstrate the expression of D2 dopamine receptor mRNA in discrete subpopulations of neurons in the rat trigeminal ganglion. Our observations suggest that drugs active at dopamine receptors of the D2 subtype are potential modulators of sensory activity of neurons whose cell bodies reside in the trigeminal ganglion. D2 dopamine receptors may thus have a role in clinical pain syndromes involving the head and neck.  相似文献   

18.
The dopaminergic systems of the brain are thought to play a major role in the regulation of motor, cognitive, neuroendocrine functions and in the pathogenesis of several pathological conditions, including neurodegenerative diseases, affective disorders, schizophrenia, drug addiction, etc. Functional, biochemical, and pharmacological heterogeneity of dopamine receptors, which were divided into D1-like (D1 and D5 subtypes) and D2-like (D2, D3, and D4) families of receptors, has been postulated. The paper concerns the recent advances in the study of the structure and function of two main dopaminergic brain systems, i.e. nigrostriatal and mesolimbic. The problem of autoreceptor regulation of dopaminergic neurotransmission, particularly the processes of dopamine synthesis, release, and metabolism is discussed. The involvement of D2 and D3 dopamine autoreceptors in the control of these processes and differences in the mode of action of typical neuroleptics are analyzed. It is hypothesized that dopamine D3 autoreceptor is preferentially involved in the regulation of dopamine release while D2 one is responsible for the control of dopamine synthesis and metabolism in rat basal ganglia in vivo.  相似文献   

19.
The effects of pharmacological manipulations of dopaminergic transmission on appetitive and consummatory aspects of male sexual behavior were investigated in castrated male Japanese quail treated with exogenous testosterone. Appetitive male sexual behavior was assessed by measuring a learned social proximity response and consummatory behavior was assessed by measuring copulatory behavior per se. The nonselective dopamine receptor agonist, apomorphine, inhibited in a dose-dependent manner both components of male sexual behavior. Two indirect dopamine agonists were also tested. Nomifensine, a dopamine re-uptake inhibitor, decreased appetitive sexual behavior but increased the frequency of mount attempts, a measure of consummatory sexual behavior. Amfonelic acid, a compound that enhances dopaminergic tone by a complex mechanism, increased aspects of both appetitive and consummatory behaviors. These data suggest that, in quail, as in rodents, increases in dopaminergic tone facilitate both appetitive and consummatory aspects of male sexual behavior. Apomorphine may be inhibitory in quail because it acts primarily on D2-like receptors, unlike in rats, where it stimulates sexual behavior and acts primarily on D1-like receptors at low doses but interacts with D2-like receptors at higher doses. This is supported by the observation that stereotyped pecking, a behavior stimulated selectively in quail by D2 agonists, was increased by apomorphine but not by the two indirect agonists. The observed partial dissociation between the effects of these dopaminergic agonists on appetitive and consummatory sexual behaviors suggests that these two components of male sexual behavior may be controlled by the action of dopamine through different neuronal systems.  相似文献   

20.
R(+)-FIDA2, (R)-(+)-2,3-dimethoxy-5-iodo-N-[(1-(4'-fluorobenzyl)-2-pyrrolid iny l)- methyl]benzamide, is a new dopamine D2-like receptor imaging agent that can be labeled with either 123I or 18F for SPECT or PET imaging. The purpose of this study was to characterize its in vitro and in vivo binding properties. METHODS: In vitro binding studies using [125I]R(+)-FIDA2 were performed in Sf9 cells expressing dopamine D2 or D3 receptors and in rat basal forebrain homogenates, which contain a high density of dopamine D2-like receptors. A series of in vivo SPECT imaging studies in nonhuman primates (cynomologous monkeys) were performed by intravenously injecting 7.1 +/- 1.0 mCi of [123I]R(+)-FIDA2. At least one control study and one displacement experiment, in which a cold compound was injected intravenously 90 min after tracer injection, was performed in each monkey. Data were acquired in 10-min frames for 180 min, and the activity in regions of interest (basal ganglia and cerebellum) were plotted versus time. RESULTS: Iodine-125-R(+)-FIDA2 displayed Kd values for D2 and D3 receptor subtypes expressed in Sf9 cells of 0.11 and 0.04 nM, respectively. As expected, SPECT images of monkey brain (transaxial sections, 2 mm) showed that the radioactivity was localized in the area of the basal ganglia and reached peak concentrations in 11.5 +/- 5.8 min postinjection. An injection of R(+)7-OH-PIPAT, a new ligand that is selective for dopamine D3 receptors and the high affinity state of dopamine D2 receptors, did not show significant displacement of [123I]R(+)-FIDA2 binding in the basal ganglia. CONCLUSION: These studies indicate that R(+)-FIDA2 may be a useful ligand for in vitro pharmacological characterization and in vivo imaging of CNS dopamine D2-like receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号