首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We report novel molecules incorporating the nontoxic squalene scaffold and different carbonic anhydrase inhibitors (CAIs). Potent inhibitory action, in the low-nanomolar range, was detected against isoforms hCA II for sulfonamide derivatives, which proved to be selective against this isoform over the tumor-associate hCA IX and XII isoforms. On the other hand, coumarin derivatives showed weak potency but high selectivity against the tumor-associated isoform CA IX. These compounds are interesting candidates for preclinical evaluation in glaucoma or various tumors in which the two enzymes are involved. In addition, an in silico study of inhibitor-bound hCA II revealed extensive interactions with the hydrophobic pocket of the active site and provided molecular insights into the binding properties of these new inhibitors.  相似文献   

2.
The synthesis and carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of two series of aromatic sulfonamides and their Cu(II) derivatives, incorporating metal-complexing moieties of the DTPA, DOTA, and TETA type are reported. The new compounds were designed in such a way as to possess high affinity for Cu(II) ions, exploiting four pendant carboxylate moieties in the DTPA derivatives, as well as the cyclen/cyclam macrocyles, and three pendant acetate moieties in the DOTA and TETA derivatives. The new derivatives showed modest inhibition of the cytosolic isoform CA I (K(I) values in the range of 66-2130 nM), were better CA II inhibitors (K(I) values in the range of 21-360 nM), and excellent inhibitors of the tumor-associated isoform CA IX (K(I) values in the range of 4.1-110 nM), with selectivity ratios for the inhibition of the tumor (CA IX) over the cytosolic (CA II) isozyme in the range of 10.74-20.88 for the best derivatives. Copper complexes were more inhibitory than the corresponding ligand sulfonamides, and showed membrane impermeability, thus, having the possibility to specifically target the transmembrane CA IX that has an extracellular active site. Incorporation of radioactive copper isotopes in this type of CA inhibitor may lead to interesting diagnostic/therapeutic applications for such compounds.  相似文献   

3.
Owing to severe allergic reactions (anaphylaxis) and resistance exhibited by sulfonamide-based carbonic anhydrase (CA) inhibitors, non-classical or non-sulfonamide CA inhibitors are gaining increased attention by medicinal chemists. In this context, we report the design and synthesis of 30 new non-sulfonamide sulfocoumarin derivatives as CA inhibitors. They were investigated against hCA I and II (cytosolic isozymes) as well as hCA IX and XII (transmembrane, tumor-associated enzymes). All compounds showed prominent selectivity for the tumor-associated isoenzymes hCA IX and XII over the cytosolic isoenzymes hCA I and II. Among all synthesized compounds, 1-(2,2-dioxidobenzo[e][1,2]oxathiin-6-yl)-3-(o-tolyl)urea( 5 j )and1-(3-fluorophenyl)-3-(8-methoxy-2,2-dioxidobenzo[e][1,2]oxathiin-6-yl)urea( 5 q )were found to be more potent and to have better inhibition constant values against hCA IX than the standard acetazolamide (AAZ), with Ki values of 23.6 and 23.3 nM, respectively. All other compounds were found to be active under Ki=920 nM against hCA IX and XII.This study provides a new perspective for the future development of non-sulfonamide derivatives as selective CA inhibitors.  相似文献   

4.
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the essential reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. A series of chromene-based sulfonamides were synthesized and tested as possible CA inhibitors. Their inhibitory activity was assessed against the cytosolic human isoforms hCA I, hCA II and the transmembrane hCA IX and XII. Several of the investigated derivatives showed interesting inhibition activity towards the tumor associate isoforms hCA IX and hCA XII. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds, within the active site of hCA IX.  相似文献   

5.
Carbonic anhydrases (CAs) are implicated in a wide range of diseases, including the upregulation of isoforms CA IX and XII in many aggressive cancers. However, effective inhibition of disease‐implicated CAs should minimally affect the ubiquitously expressed isoforms, including CA I and II, to improve directed distribution of the inhibitors to the cancer‐associated isoforms and reduce side effects. Four benzenesulfonamide‐based inhibitors were synthesized by using the tail approach and displayed nanomolar affinities for several CA isoforms. The crystal structures of the inhibitors bound to a CA IX mimic and CA II are presented. Further in silico modeling was performed with the inhibitors docked into CA I and XII to identify residues that contributed to or hindered their binding interactions. These structural studies demonstrated that active‐site residues lining the hydrophobic pocket, especially positions 92 and 131, dictate the positional binding and affinity of inhibitors, whereas the tail groups modulate CA isoform specificity. Geometry optimizations were performed on each ligand in the crystal structures and showed that the energetic penalties of the inhibitor conformations were negligible compared to the gains from active‐site interactions. These studies further our understanding of obtaining isoform specificity when designing small molecule CA inhibitors.  相似文献   

6.
Based on the strategy of the “tail approach”, 15 novel saccharide-modified sulfonamides were designed and synthesised. The novel compounds were evaluated as inhibitors of three human carbonic anhydrase (CA) isoforms, namely cytoplasmic CA II, transmembrane CA IX, and XII. Most of these compounds showed good activity against CAs and high topological polar surface area (TPSA) values, which had a positive effect on the selective inhibition of transmembrane isoforms CA IX and XII. In the in vitro activity studies, compounds 16a, 16b, and 16e reduced the viability of HT-29 and MDA-MB-231 cells with a high expression of CA IX under hypoxia. The inhibitory activity of compound 16e on the human osteosarcoma cell line MG-63 with a high expression of CA IX and XII was better than that of AZM. Moreover, high concentrations of compounds 16a and 16b reversed the acidification of the tumour microenvironment. In addition, compound 16a had a certain inhibitory effect on the migration of MDA-MB-231 cells. All the above results indicate that the saccharide-modified sulfonamide has further research value for the development of CA IX inhibitors.  相似文献   

7.
A study on the activity of selenocarbamates as a novel chemotype acting as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors is reported. Undergoing CA-mediated hydrolysis, selenocarbamates release selenolates behaving as zinc binding groups and effectively inhibiting CAs. A series of selenocarbamates characterised by high molecular diversity and complexity have been studied against different human CA isoforms such as hCA I, II, IX and XII. Selenocarbamates behave as masked selenols with potential biological applications as prodrugs for CAs inhibition-based strategies. X-ray studies provided insights into the binding mode of this novel class of CA inhibitors.  相似文献   

8.
We describe the synthesis of a series of thiadiazolyl-benzenesulfonamide derivatives carrying an aromatic tail linked by an amide linker ( 12–34 ), as human carbonic anhydrase (hCA) inhibitors. These thiadiazol derivatives were evaluated against four physiologically relevant CA isoforms (hCA I, II, IX, and XII), and demonstrated intriguing inhibitory activity against CA II with Ki values in the range of 2.4–31.6 nM. Besides hCA II, also hCA XII activity was potently inhibited by some of the derivatives (Ki=1.5–88.5 nM), producing dual inhibitors of both isoforms. Notably, compound 17 was the most potent dual CA II (Ki=3.1 nM) and XII (Ki=1.5 nM) inhibitor with a significant selectivity ratio over CA I and IX isoforms. In conclusion, although all compounds exhibited preferential activity towards hCA II, the nature of the substituents at the tail part of the main scaffold influenced the activity and selectivity toward other isoforms.  相似文献   

9.
(1) Background: carbonic anhydrases (CAs) are attractive targets for the development of new anticancer therapies; in particular, CAs IX and XII isoforms are overexpressed in numerous tumors. (2) Methods: following the tail approach, we have appended a hydrophobic aromatic tail to a pharmacophore responsible for the CA inhibition (aryl sulfonamide, coumarin). As a linker, we have used squaramides, featured with strong hydrogen bond acceptor and donor capacities. (3) Results: Starting from easily accessible dimethyl squarate, the title compounds were successfully obtained as crystalline solids, avoiding the use of chromatographic purifications. Interesting and valuable SARs could be obtained upon modification of the length of the hydrocarbon chain, position of the sulfonamido moiety, distance of the aryl sulfonamide scaffold to the squaramide, stereoelectronic effects on the aromatic ring, as well as the number and type of substituents on C-3 and C-4 positions of the coumarin. (4) Conclusions: For sulfonamides, the best profile was achieved for the m-substituted derivative 11 (Ki = 29.4, 9.15 nM, CA IX and XII, respectively), with improved selectivity compared to acetazolamide, a standard drug. Coumarin derivatives afforded an outstanding selectivity (Ki > 10,000 nM for CA I, II); the lead compound (16c) was a strong CA IX and XII inhibitor (Ki = 19.2, 7.23 nM, respectively). Docking simulations revealed the key ligand-enzyme interactions.  相似文献   

10.
Substituted tri‐ and tetrafluorobenzenesulfonamides were designed, synthesized, and evaluated as high‐affinity and isoform‐selective carbonic anhydrase (CA) inhibitors. Their binding affinities for recombinant human CA I, II, VA, VI, VII, XII, and XIII catalytic domains were determined by fluorescent thermal shift assay, isothermal titration calorimetry, and a stopped‐flow CO2 hydration assay. Variation of the substituents at the 2‐, 3‐, and 4‐positions yielded compounds with a broad range of binding affinities and isoform selectivities. Several 2,4‐substituted‐3,5,6‐trifluorobenzenesulfonamides were effective CA XIII inhibitors with high selectivity over off‐target CA I and CA II. 3,4‐Disubstituted‐2,5,6‐trifluorobenzenesulfonamides bound CAs with higher affinity than 2,4‐disubstituted‐3,5,6‐trifluorobenzenesulfonamides. Many such fluorinated benzenesulfonamides were found to be nanomolar inhibitors of CA II, CA VII, tumor‐associated CA IX and CA XII, and CA XIII. X‐ray crystal structures of inhibitors bound in the active sites of several CA isoforms provide structure–activity relationship information for inhibitor binding affinities and selectivity.  相似文献   

11.
A new series of quinoline-based benzenesulfonamides (QBS) were developed as potential carbonic anhydrase inhibitors (CAIs). The target QBS CAIs is based on the 4-anilinoquinoline scaffold where the primary sulphonamide functionality was grafted at C4 of the anilino moiety as a zinc anchoring group (QBS 13a–c); thereafter, the sulphonamide group was switched to ortho- and meta-positions to afford regioisomers 9a–d and 11a–g. Moreover, a linker elongation approach was adopted where the amino linker was replaced by a hydrazide one to afford QBS 16. All the described QBS have been synthesized and investigated for their CA inhibitory action against hCA I, II, IX and XII. In general, para-sulphonamide derivatives 13a–c displayed the best inhibitory activity against both cancer-related isoforms hCA IX (KIs = 25.8, 5.5 and 18.6 nM, respectively) and hCA XII (KIs = 9.8, 13.2 and 8.7 nM, respectively), beside the excellent hCA IX inhibitory activity exerted by meta-sulphonamide derivative 11c (KI = 8.4 nM). The most promising QBS were further evaluated for their anticancer and pro-apoptotic activities on two cancer cell lines (MDA-MB-231 and MCF-7). In addition, molecular docking simulation studies were applied to justify the acquired CA inhibitory action of the target QBS.  相似文献   

12.
Primary sulfonamide derivatives with various heterocycles represent the most widespread group of potential human carbonic anhydrase (hCA) inhibitors with high affinity and selectivity towards specific isozymes from the hCA family. In this work, new 4-aminomethyl- and aminoethyl-benzenesulfonamide derivatives with 1,3,5-triazine disubstituted with a pair of identical amino acids, possessing a polar (Ser, Thr, Asn, Gln) and non-polar (Ala, Tyr, Trp) side chain, have been synthesized. The optimized synthetic, purification, and isolation procedures provided several pronounced benefits such as a short reaction time (in sodium bicarbonate aqueous medium), satisfactory yields for the majority of new products (20.6–91.8%, average 60.4%), an effective, well defined semi-preparative RP-C18 liquid chromatography (LC) isolation of desired products with a high purity (>97%), as well as preservation of green chemistry principles. These newly synthesized conjugates, plus their 4-aminobenzenesulfonamide analogues prepared previously, have been investigated in in vitro inhibition studies towards hCA I, II, IV and tumor-associated isozymes IX and XII. The experimental results revealed the strongest inhibition of hCA XII with low nanomolar inhibitory constants (Kis) for the derivatives with amino acids possessing non-polar side chains (7.5–9.6 nM). Various derivatives were also promising for some other isozymes.  相似文献   

13.
Two novel sulfaguanidine series, six N-(N,N′-dialkyl/dibenzyl-carbamimidoyl) benzenesulfonamide derivatives and nine N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamide derivatives, were obtained by desulfidative amination of easily accessible dimethyl arylsulfonylcarbonimidodithioates under catalyst- and base-free conditions. The newly synthesized compounds were tested for the inhibition of four different isozymes of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). Both series reported here were inactive against the off-target isozymes hCA I and II (Ki>100 μM). Interestingly, all investigated compounds inhibited both target isozymes hCA IX and XII in the submicromolar to micromolar ranges in which Ki values spanned from 0.168 to 0.921 μM against hCA IX and from 0.335 to 1.451 μM against hCA XII. The results indicated that N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamides were slightly more potent inhibitors than N-(N,N′-dialkyl/dibenzyl-carbamimidoyl) benzenesulfonamides. Among the evaluated compounds, N-n-octyl-substituted N-carbamimidoylbenzenesulfonamide showed the most significant activity with a Ki value of 0.168 μM against hCA IX, which was four-fold more selective toward this isozyme versus hCA XII. Again, another derivative from N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamide series, N-p-methylbenzyl-substituted N-carbamimidoylbenzenesulfonamide, demonstrated superior inhibitory activity against hCA XII with a Ki value of 0.335 μM.  相似文献   

14.
We report aryl sulfonamide inhibitors of human carbonic anhydrase (hCA; EC 4.2.1.1) enzymes containing short ureido alkoxy tails. The inhibition potency of such compounds was investigated in vitro on the major hCA isoforms (i.e. I, II, IX, and XII). A selection of the most potent inhibitory derivatives against the hCA IX isoform (i.e. 5a, 5c, and 6c) was studied, and their binding modes on either hCA II and IX-mimic isoform were assessed by X-ray crystallography on the corresponding ligand/protein adducts. This study adds to the field of developing hCA inhibitors at molecular level the critical interactions governing ligand selectivity.  相似文献   

15.
Indanesulfonamides are interesting lead compounds for designing selective inhibitors of the different isoforms of the zinc enzyme Carbonic Anhydrase (CA). Herein, we report for the first time the X-ray crystal structure of two such derivatives, namely indane-5-sulfonamide and indane-2-valproylamido-5-sulfonamide, in complex with the physiologically dominant human isoform II. The structural analysis reveals that, although these two inhibitors have quite similar chemical structures, the arrangement of their indane ring within the enzyme active site is significantly diverse. Thus, our findings suggest that the introduction of bulky substituents on the indane-sulfonamide ring may alter the binding mode of this potent class of CA inhibitors, although retaining good inhibitory properties. Accordingly, the introduction of bulky tail moieties on the indane-sulfonamide scaffold may represent a powerful strategy to induce a desired physicochemical property to an aromatic sulfonamide or to obtain inhibitors with diverse inhibition profiles and selectivity for various mammalian CAs.  相似文献   

16.
A series of saccharide-modified thiadiazole sulfonamide derivatives has been designed and synthesized by the “tail approach” and evaluated for inhibitory activity against carbonic anhydrases II, IX, and XII. Most of the compounds showed high topological polar surface area (TPSA) values and excellent enzyme inhibitory activity. The impacts of some compounds on the viability of HT-29, MDA-MB-231, and MG-63 human cancer cell lines were examined under both normoxic and hypoxic conditions, and they showed certain inhibitory effects on cell viability. Moreover, it was found that the series of compounds had the ability to raise the pH of the tumor cell microenvironment. All the results proved that saccharide-modified thiadiazole sulfonamides have important research prospects for the development of CA IX inhibitors.  相似文献   

17.
Hypoxia-regulated protein carbonic anhydrase IX (CA IX) is up-regulated in different tumor entities and correlated with poor prognosis in breast cancer patients. Due to the radio- and chemotherapy resistance of solid hypoxic tumors, derivatives of betulinic acid (BA), a natural compound with anticancer properties, seem to be promising to benefit these cancer patients. We synthesized new betulin sulfonamides and determined their cytotoxicity in different breast cancer cell lines. Additionally, we investigated their effects on clonogenic survival, cell death, extracellular pH, HIF-1α, CA IX and CA XII protein levels and radiosensitivity. Our study revealed that cytotoxicity increased after treatment with the betulin sulfonamides compared to BA or their precursors, especially in triple-negative breast cancer (TNBC) cells. CA IX activity as well as CA IX and CA XII protein levels were reduced by the betulin sulfonamides. We observed elevated inhibitory efficiency against protumorigenic processes such as proliferation and clonogenic survival and the promotion of cell death and radiosensitivity compared to the precursor derivatives. In particular, TNBC cells showed benefit from the addition of sulfonamides onto BA and revealed that betulin sulfonamides are promising compounds to treat more aggressive breast cancers, or are at the same level against less aggressive breast cancer cells.  相似文献   

18.
Fungi are exposed to various environmental variables during their life cycle, including changes in CO2 concentration. CO2 has the potential to act as an activator of several cell signaling pathways. In fungi, the sensing of CO2 triggers cell differentiation and the biosynthesis of proteins involved in the metabolism and pathogenicity of these microorganisms. The molecular machineries involved in CO2 sensing constitute a promising target for the development of antifungals. Carbonic anhydrases (CAs, EC 4.2.1.1) are crucial enzymes in the CO2 sensing systems of fungi, because they catalyze the reversible hydration of CO2 to proton and HCO3-. Bicarbonate in turn boots a cascade of reactions triggering fungal pathogenicity and metabolism. Accordingly, CAs affect microorganism proliferation and may represent a potential therapeutic target against fungal infection. Here, the inhibition of the unique β-CA (MpaCA) encoded in the genome of Malassezia pachydermatis, a fungus with substantial relevance in veterinary and medical sciences, was investigated using a series of conventional CA inhibitors (CAIs), namely aromatic and heterocyclic sulfonamides. This study aimed to describe novel candidates that can kill this harmful fungus by inhibiting their CA, and thus lead to effective anti-dandruff and anti-seborrheic dermatitis agents. In this context, current antifungal compounds, such as the azoles and their derivatives, have been demonstrated to induce the selection of resistant fungal strains and lose therapeutic efficacy, which might be restored by the concomitant use of alternative compounds, such as the fungal CA inhibitors.  相似文献   

19.
With the aim to develop potent and selective human carbonic anhydrase inhibitors (hCAIs), we synthesized 4‐sulfamoylphenyl/sulfocoumarin benzamides (series 5 a – r and series 7 a – q ) and evaluated their inhibition profiles against five isoforms of the zinc‐containing human carbonic anhydrase (hCA, EC 4.2.1.1): cytosolic hCA I and II, and the transmembrane isozymes hCA IV, IX, and XII. Compounds 5 a – r were found to selectively inhibit hCA II in the nanomolar range, while being less effective against the other hCA isoforms. As noted from the literature, sulfocoumarin (1,2‐benzoxathiine 2,2‐dioxide) acts as a “prodrug” inhibitor and is hydrolyzed by the esterase activity of hCA to form 2‐hydroxyphenylvinylsulfonic acid, which thereafter binds to the enzyme in a manner similar to that of coumarins and sulfoxocoumarins. All these sulfocoumarins (compounds 7 a – q ) were found to be very weak or ineffective as inhibitors of the housekeeping off‐target hCA isoforms I and II, and effectively inhibited the transmembrane tumor‐associated isoforms IX and XII in the high nanomolar to micromolar ranges. Further structural modifications of these molecules could be useful for the development of effective hCA inhibitors used for the treatment of glaucoma, epilepsy, and cancer.  相似文献   

20.
This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn2+ ion in the enzyme active site. Detailed structure-activity relationship (SAR) studies of a large series containing 50 compounds uncovered structural features of the cluster-containing inhibitors that are important for efficient and selective inhibition of CA IX activity. Preclinical evaluation of selected compounds revealed low toxicity, favorable pharmacokinetics and ability to reduce tumor growth. Cluster-containing inhibitors of CA IX can thus be considered as promising candidates for drug development and/or for combination therapy in boron neutron capture therapy (BNCT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号